Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-02-29
Page range: 165-174
Abstract views: 10
PDF downloaded: 0

Velutinus, a novel genus in Patellariopsidaceae from medicinal plants in Sichuan Province, China

Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand. School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand. School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand. School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand.
School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
2 new taxa asexual morph leotiomycetes phylogeny taxonomy Eudicots

Abstract

Velutinus sichuanensis gen. et sp. nov. was collected from dead branches of the medicinal plant Loropetalum chinense var. rubrum (Hamamelidaceae) in Sichuan Province, China. The genus Velutinus is characterized by having cylindrical, straight or slightly curved, septate, hyaline conidiophores, holoblastic, polyblastic conidiogenous cells, and thick-walled, dark brown, septate, spherical conidia, sometimes with conspicuous appendages. Molecular phylogenetic analyses based on the combined ITS and LSU sequences data showed that Velutinus forms a distinct lineage in Patellariopsidaceae, Helotiales, Leotiomycetes. The new genus, Velutinus is introduced to accommodate V. sichuanensis based on morphological characteristics and multi-gene phylogenetic analyses. Detailed descriptions and illustrations of the new taxa are provided.

References

  1. Bhagat, J., Kaur, A., Sharma, M., Saxena, A.K. & Chadha, B.S. (2012) Molecular and functional characterization of endophytic fungi from traditional medicinal plants. World Journal of Microbiology and Biotechnology 28: 963–971. https://doi.org/10.1007/s11274-011-0894-0
  2. Boddy, L. (2001) Fungal community ecology and wood decomposition processes in angiosperms: from standing tree to complete decay of coarse woody debris. Ecological Bulletins 49: 43–56.
  3. Chomnunti, P., Hongsanan, S., Hudson, B.A., Tian, Q., Peršoh, D., Dhami, M.K., Alias, A.S., Xu, J.C., Liu, X.Z., Stadler, M. & Hyde, K.D. (2014) The sooty moulds. Fungal Diversity 66: 1–36. https://doi.org/10.1007/s13225-014-0278-5
  4. Crous, P.W., Gams, W., Stalpers, J.A., Robert, V. & Stegehuis, G. (2004) MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19–22.
  5. Dar, R.A., Shahnawaz, M. & Qazi, P.H. (2017) General overview of medicinal plants: a review. The Journal of Phytopharmacology 6: 349–351. https://doi.org/10.31254/phyto.2017.6608
  6. Dennis, R.W.G. (1974) New or interesting British microfungi. II. Kew Bulletin 29: 157–179. https://doi.org/10.2307/4108382
  7. Dissanayake, A.J., Bhunjun, C.S., Maharachchikumbura, S.S.N. & Liu, J.K. (2020) Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 11: 2653–2677. https://doi.org/10.5943/mycosphere/11/1/18
  8. Ekanayaka, A.H., Hyde, K.D., Gentekaki, E., McKenzie, E.H.C., Zhao, Q., Bulgakov, T.S. & Camporesi, E. (2019) Preliminary classification of Leotiomycetes. Mycosphere 10: 310–489. https://doi.org/10.5943/mycosphere/10/1/7
  9. Eriksson, O.E. (2005) Notes on Ascomycetes Systematics. Nos. 3912–4284. Myconet 11: 1–51.
  10. Grünig, C.R., Sieber, T.N., Rogers, S.O. & Holdenrieder, O. (2002) Genetic variability among strains of Phialocephala fortinii and phylogenetic analysis of the genus Phialocephala based on rDNA ITS sequence comparisons. Canadian Journal of Botany 80: 1239–1249. https://doi.org/10.1139/b02-115
  11. Hall, T. (2006) Bioedit 7.5.0.3. Department of Microbiology, North Carolina State University. [http://www.mbio.ncsu.edu/BioEdit/Bioedit.html]
  12. Han, C.Z., Fu, B.Z. & Wu, J.R. (2012) Survey and control strategies of important diseases of ornamental plants in Golden Temple Park in Kunming. Journal of Southwest Forestry University 32: 100–103.
  13. Hosoya, T. & Otani, Y. (1995) Gelatinipulvinella astraeicola gen. et sp. nov., a fungicolous discomycetes and its anamorph. Mycologia 87: 689–696. https://doi.org/10.1080/00275514.1995.12026585
  14. Hyde, K.D., Dong, Y., Phookamsak, R., Jeewon, R., Bhat, D.J. & Sheng, J. (2020) Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 100: 5–277. https://doi.org/10.1007/s13225-020-00439-5
  15. Jafari, A.A. (2018) Mycotoxins, a major challenge in global food security. Journal of Nutrition and Food Security 3: 1–3.
  16. Jayasiri, S.C., Hyde, K.D., Ariyawansa, H.A., Bhat, J., Buyck, B. & Promputtha, I. (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74: 3–18. https://doi.org/10.1007/s13225-015-0351-8
  17. Johnston, P.R. & Park, D. (2005) Chlorociboria (Fungi, Helotiales) in New Zealand. New Zealand Journal of Botany 43: 679–719. https://doi.org/10.1080/0028825X.2005.9512985
  18. Karunarathna, A., Peršoh, D., Ekanayaka, A.H., Jayawardena, R.S., Chethana, K.W.T., Goonasekara, I.D. & Karunarathna, S.C. (2020) Patellariopsidaceae fam. nov. with sexual-asexual connection and a new host record for Cheirospora botryospora (Vibrisseaceae, Ascomycota). Frontiers in Microbiology 11: 906. https://doi.org/10.3389/fmicb.2020.00906
  19. Kumar, V., Cheewangkoon, R., Gentekaki, E., Maharachchikumbura, S.S.N., Brahmanage, R.S. & Hyde, K.D. (2019) Neopestalotiopsis alpapicalis sp. nov. a new endophyte from tropical mangrove trees in Krabi Province (Thailand). Phytotaxa 393: 251–262. https://doi.org/10.11646/phytotaxa.393.3.2
  20. Larsson, A. (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30: 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
  21. Li, W.J., Bhat, D., Camporesi, E., Tian, Q., Wijayawardene, N.N., Dai, D.Q., Phookamsak, R., Chomnunti, P., Bahkali, A.H. & Hyde, K.D. (2015a) New asexual morph taxa in Phaeosphaeriaceae. Mycosphere 6: 681–708. https://doi.org/10.5943/mycosphere/6/6/5
  22. Li, W.J., Liu, J.K., Bhat, D.J., Camporesi, E., Dai, D.Q., Mortimer, P.E., Xu, J.C., Hyde, K.D. & Chomnunti, P. (2015b) Molecular phylogenetic analysis reveals two new species of Discosia. Phytotaxa 203: 37–46. https://doi.org/10.11646/phytotaxa.181.1.1
  23. Li, W.J., Maharachchikumbura, S.S.N., Li, Q.R., Bhat, D.J., Camporesi, E., Tian, Q., Senanayake, I.C., Dai, D.Q., Chomnunti, P. & Hyde, K.D. (2015c) Epitypification of Broomella vitalbae and introduction of a novel species of Hyalotiella. Cryptogamie, Mycologie 36: 93–108. https://doi.org/10.7872/crym.v36.iss1.2015.93
  24. Liu, J.K., Chomnunti, P., Cai, L., Phookamsak, R., Chukeatirote, E., Jones, E.B.G., Moslem, M. & Hyde, K.D. (2010) Phylogeny and morphology of Neodeightonia palmicola sp. nov. from palms. Sydowia 62: 261−276.
  25. Long, H., Zhang, Q., Hao, Y.Y., Shao, X.Q., Wei, X.X., Hyde, K.D., Wang, Y. & Zhao, D.G. (2019) Diaporthe species in south-western China. MycoKeys 57: 113. https://doi.org/10.3897/mycokeys.57.35448
  26. Ma, X.Y., Maharachchikumbura, S.S.N., Chen, B.W., Hyde, K.D., McKenzie, E.H.C., Chomnunti, P. & Kang, J.C. (2019) Endophytic pestalotiod taxa in Dendrobium orchids. Phytotaxa 419: 268–286. https://doi.org/10.11646/phytotaxa.419.3.2
  27. Marinelli, J (2004) Plant: the ultimate visual reference to plants and flowers of the world. Dorling Kindersley, pp. 1–512.
  28. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 gateway computing environments workshop (GCE). pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129
  29. Monreal, M., Berch, S.M. & Berbee, M. (2000) Molecular diversity of ericoid mycorrhizal fungi. Canadian Journal of Botany 77: 1580–1594. https://doi.org/10.1139/b99-107
  30. Nannfeldt, J.A. (1932) Studien über die Morphologie und Systematik der nicht-lichenisierten inoperculaten Discomyceten. Nova acta Regiae Societatis Scientiarum Upsaliensis series IV 8: 1–368.
  31. Niu, X.P., Gao, H., Qi, J.M., Chen, M.C., Tao, A., Xu, J.T., Dai, Z.G. & Su, J.G. (2016) Colletotrichum species associated with jute (Corchorus capsularis L.) anthracnose in southeastern China. Scientific Reports 6: 1–9. https://doi.org/10.1038/srep25179
  32. Nylander, J.A.A. (2004) MrModeltest V2. Uppsala University, Uppsala, Sweden. Evolutionary Biology Centre.
  33. Phukhamsakda, C., McKenzie, E.H.C., Phillips, A.J.L., Gareth Jones, E.B., Jayarama Bhat, D., Stadler, M., Bhunjun, C.S., Wanasinghe, D.N., Thongbai, B., Camporesi, E., Ertz, D., Jayawardena, R.S., Perera, R.H., Ekanayake, A.H., Tibpromma, S., Doilom, M., Xu, J. & Hyde, K.D. (2020) Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Diversity 102: 1–203. https://doi.org/10.1007/s13225-020-00448-4
  34. Phumthum, M., Balslev, H. & Barfod, A.S. (2019) Important medicinal plant families in Thailand. Front Pharmacol 10: 1125–1125. https://doi.org/10.3389/fphar.2019.01125
  35. Pöder, R. & Scheuer, C. (1994) Moserella radicicola gen. et sp. nov., a new hypogeous species of Leotiales on ectomycorrhizas of Picea abies. Mycological Research 98: 1334–1338. https://doi.org/10.1016/S0953-7562(09)80307-9
  36. Rasool, A., Bhat, K.M., Sheikh, A.A., Jan, A. & Hassan, S. (2020) Medicinal plants: role, distribution and future. Journal of Pharmacognosy and Phytochemisty 9: 2111–2114.
  37. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  38. Senanayake, I.C., Rathnayaka, A.R., Marasinghe, D.S., Calabon, M.S., Gentekaki, E., Lee, H.B. & Xiang, M.M. (2020) Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11: 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20
  39. Shoemaker, R.A., Hambleton, S., Lacroix, M., Tesolin, M. & Coulombe, J. (2002) Fungi Canadenses No. 344: Rhexocercosporidium carotae. Canadian Journal of Plant Pathology 24: 359–362. https://doi.org/10.1080/07060660209507021
  40. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  41. Sun, Y.R., Liu, N.G., Hyde, K.D., Jayawardena, R.S. & Wang, Y. (2022) Pleocatenata chiangraiensis gen. et. sp. nov. (Pleosporales, Dothideomycetes) from medicinal plants in northern Thailand. MycoKeys 87: 77–98. https://doi.org/10.3897/mycokeys.87.79433
  42. Sun, Y.R., Jayawardena, R.S., Sun, J.E. & Wang, Y. (2023a) Pestalotioid species associated with medicinal plants in southwest China and Thailand. Microbiology Spectrum 11: e03987-22. https://doi.org/10.1128/spectrum.03987-22
  43. Sun, Y.R., Zhang, J.Y., Hyde, K.D., Wang, Y. & Jayawardena, R.S. (2023b) Morphology and phylogeny reveal three Montagnula species from China and Thailand. Plants 12: 738. https://doi.org/10.3390/plants12040738
  44. Tennakoon, D.S., Kuo, C.H., Maharachchikumbura, S.S.N., Thambugala, K.M., Gentekaki, E., Phillips, A.J.L., Bhat, D.J., Wanasinghe, D.N., de Silva, N.I., Promputtha, I. & Hyde, K.D. (2021) Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Diversity 108: 1–215. https://doi.org/10.1007/s13225-021-00474-w
  45. Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  46. Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238−4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  47. Wang, Z., Binder, M., Schoch, C.L., Johnston, P.R., Spatafora, J.W. & Hibbett, D.S. (2006) Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny. Molecular Phylogenetics and Evolution 41: 295–312. https://doi.org/10.1016/j.ympev.2006.05.031
  48. White, T.J., Bruns, T., Lee, S.J.W.T. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  49. Wijayawardene, N.N., Hyde, K.D., Lumbsch, H.T., Liu, J.K., Maharachchikumbura, S.S.N., Ekanayaka, A.H., Tian, Q. & Phookamsak, R. (2018) Outline of Ascomycota: 2017. Fungal Diversity 88: 167–263. https://doi.org/10.1007/s13225-018-0394-8
  50. Wijayawardene, N.N., Hyde, K.D., Dai, D.Q., Sánchez-García, M., Goto, B.T. & Thines, M. (2022) Outline of Fungi and fungus-like taxa. Mycosphere 13: 53–453. https://doi.org/10.5943/mycosphere/13/1/2
  51. Zhao, Z.l., Liu, D.T., Yang, W.Z., Zhang, J.Y., Jin, H. & Yang, M.Q. (2010) Pathogen identification of the anthracnose of Ligusticum chuanxiong and the inhibitory effect of four fungicides on the pathogen. Plant Diseases and Pests 1: 18–21.
  52. Zhao, Z.L., Zhang, Z.H., Yang, W.Z., Yang, T.M., Yang, M.Q. & Jin, H. (2014) Identification of anthracnose pathogen of Coptis teeta, Thalictrum, Tupistra chinensis in Yunnan. Southwest China Journal of Agricultural Sciences 27: 1543–1546.