Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-04-27
Page range: 37-51
Abstract views: 46
PDF downloaded: 2

Diaporthe orixae sp. nov., an endophytic species isolated from Orixa japonica in southern China

School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, P.R. China; Guizhou Academy of Testing and Analysis, Guiyang 550000, P.R. China; School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, P.R. China
School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, P.R. China; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, P.R. China; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, P.R. China
School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, P.R. China; Guizhou Academy of Testing and Analysis, Guiyang 550000, P.R. China
1 novel species Diaporthales microfungi Sordariomycetes taxonomy Fungi

Abstract

In this study, a novel endophytic fungus, Diaporthe orixae, and a new host record of Diaporthe caryae were obtained from a medicinal plant, Orixa japonica in southern China. Phylogenetic analyses based on a combination of ITS, tef1-α, β-tub, cal, and his3 datasets confirmed that D. orixae is a distinct species, which is sister to D. sackstonii (BRIP 54669b). Diaporthe orixae sp. nov. differs from D. sackstonii in having larger conidiomata and smaller conidiogenous cells and alpha conidia on morphological examination. The new species and new host record are reported with taxonomic descriptions and illustrations.

References

<p>Carbone, I. &amp; Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. <em>Mycologia</em> 91: 553–556. https://doi.org/10.1080/00275514.1999.12061051</p>
<p>Chernomor, O., Von Haeseler, A. &amp; Minh, B.Q. (2016) Terrace aware data structure for phylogenomic inference from supermatrices. <em>Systematic biology </em>65: 997–1008.</p>
<p>Dissanayake, A.J., Phillips, A., Hyde, K.D., Yan, J. &amp; Li, X. (2017) The current status of species in <em>Diaporthe</em>. <em>Mycosphere</em> 8 (5): 1106–1156. https://doi.org/10.5943/mycosphere/8/5/5</p>
<p>Dissanayake, A.J., Chen, Y.Y. &amp; Liu, J.K. (2020a) Unravelling <em>Diaporthe</em> species associated with woody hosts from Karst Formations (Guizhou) in China. <em>Journal of Fungi </em>6 (4): 251. https://doi.org/10.3390/jof6040251</p>
<p>Dissanayake, A.J., Bhunjun, C.S., Maharachchikumbura, S.S.N. &amp; Liu, J.K. (2020b) Applied aspects of methods to infer phylogenetic relationships amongst fungi. <em>Mycosphere </em>11: 2653–2677. https://doi.org/10.5943/mycosphere/11/1/18</p>
<p>Funayama, S., Tanaka, R., Kumekawa, Y., Noshita, T., Mori, T., Kashiwagura, T. &amp; Murata, K. (2001) Rat small intestine muscle relaxation alkaloids from <em>Orixa japonica</em> leaves. <em>Biological and Pharmaceutical Bulletin</em> 24: 100–102. https://doi.org/10.1248/bpb.24.100</p>
<p>Guarnaccia, V. &amp; Crous, P.W. (2017) Emerging citrus diseases in Europe caused by species of <em>Diaporthe</em>. <em>IMA fungus</em> 8 (2): 317–334.&nbsp; https://doi.org/10.5598/imafungus.2017.08.02.07</p>
<p>Gao, Y., Liu, F., Duan, W., Crous, P.W. &amp; Cai, L. (2017) <em>Diaporthe</em> is paraphyletic. <em>IMA fungus</em> 8 (1): 153–187. https://doi.org/10.5598/imafungus.2017.08.01.11</p>
<p>Glass, N.L. &amp; Donaldson, G. (1995) Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. <em>Applied and Environmental Microbiology</em> 61: 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995</p>
<p>Gomes, R., Glienke, C., Videira, S., Lombard, L., Groenewald, J. &amp; Crous, P. (2013) <em>Diaporthe</em>: a genus of endophytic, saprobic and plant pathogenic fungi. <em>Persoonia</em> 31: 1–41. https://doi.org/10.3767/003158513X666844</p>
<p>Guo, Y.S., Crous, P.W., Bai, Q., Fu, M., Yang, M.M., Wang, X.H., Du, Y.M., Hong, N., Xu, W.X. &amp; Wang, G.P. (2020) High diversity of <em>Diaporthe</em> species associated with pear shoot canker in China. <em>Persoonia-Molecular Phylogeny and Evolution of Fungi</em> 45: 132–162. https://doi.org/10.3767/persoonia.2020.45.05</p>
<p>Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. <em>Nucleic Acids Symposium Series</em> 41: 95–98.</p>
<p>Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. &amp; Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. <em>Molecular Biology and Evolution</em> 35: 518–522.&nbsp; https://doi.org/10.1093/molbev/msx281</p>
<p>Hyde, K.D. &amp; Soytong, K. (2008) The fungal endophyte dilemma. <em>Fungal Diversity</em> 33 (33): 163–173.</p>
<p>Hyde, K.D., Jeewon, R., Chen, Y.J., Bhunjun, C.S., Calabon, M.S., Jiang, H.B., Lin, C.G., Norphanphoun, C., Sysouphanthong, P., Pem, D., Tibpromma, S., Zhang, Q., Doilom, M., Jayawardena, R.S., Liu, J.K., Maharachchikumbura, S.S.N., Phukhamsakda, C., Phookamsak, R., Al-Sadi, A.M., Thongklang, N., Wang, Y., Gafforov, Y., Jones, E.B.G. &amp; Lumyong, S. (2020) The numbers of fungi: is the descriptive curve flattening? <em>Fungal Diversity</em> 103: 219–271.&nbsp; https://doi.org/10.1007/s13225-020-00458-2</p>
<p>Jeewon, R. &amp; Hyde, K.D. (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. <em>Mycosphere</em> 7 (11): 1669–1677. https://doi.org/10.5943/mycosphere/7/11/4</p>
<p>Katoh, K., Rozewicki, J. &amp; Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. <em>Briefings in bioinformatics</em> 20: 1160–1166. https://doi.org/10.1093/bib/bbx108</p>
<p>Liu, X.C., Lai, D., Liu, Q.Z., Zhou, L., Liu, Q. &amp; Liu, Z.L. (2016) Bioactivities of a new pyrrolidine alkaloid from the root barks of <em>Orixa japonica</em>. <em>Molecules</em> 21 (12): 1665. https://doi.org/10.3390/molecules21121665</p>
<p>Miller, M.A., Pfeiffer, W. &amp; Schwartz, T. (2010) Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees.<em> In: SC10 Workshop on Gateway Computing Environments (GCE10)</em>. New Orleans, LA. pp. 1–8.&nbsp; https://doi.org/10.1109/GCE.2010.5676129</p>
<p>Mostert, L., Crous, P.W., Kang, J.C. &amp; Phillips, A.J.L. (2001) Species of <em>Phomopsis</em> and a <em>Libertella</em> sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. <em>Mycologia</em> 93: 146–167. https://doi.org/10.1080/00275514.2001.12061286</p>
<p>Nisa, H., Kamili, A.N., Nawchoo, I.A., Shafi, S., Shameem, N. &amp; Bandh, S.A. (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. <em>Microbial Pathogenesis</em> 82: 50–59.&nbsp; https://doi.org/10.1016/j.micpath.2015.04.001</p>
<p>Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. &amp; Minh, B.Q (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. <em>Molecular Biology and Evolution</em> 32: 268–274.&nbsp; https://doi.org/10.1093/molbev/msu300</p>
<p>Nylander, J.A.A. (2004) MrModeltest Version 2. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University, Uppsala.</p>
<p>O’Donnell, K. &amp; Cigelnik, E. (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus <em>Fusarium</em> are noorthologous. <em>Molecular Phylogenetics and Evolution</em> 7: 103–116. https://doi.org/10.1006/mpev.1996.0376</p>
<p>Ono, H., Kuwahara, Y. &amp; Nishida, R. (2004) Hydroxybenzoic acid derivatives in a nonhost rutaceous plant, <em>Orixa japonica</em>, deter both oviposition and larval feeding in a Rutaceae-feeding swallowtail butterfly, <em>Papilio xuthu</em>s L. <em>Journal of chemical ecology</em> 30 (2): 287–301. https://doi.org/10.1023/B:JOEC.0000017978.73061.a0</p>
<p>Rambaut, A. &amp; Drummond, A. (2008) FigTree: Tree figure drawing tool, version 1.2. 2. Institute of Evolutionary Biology, University of Edinburgh.</p>
<p>Rashmi, M., Kushveer, J.S., Sarma, V.V. (2019) A worldwide list of endophytic fungi with notes on ecology and diversity. <em>Mycosphere</em> 10 (1): 798–1079.&nbsp; https://doi.org/10.5943/mycosphere/10/1/19</p>
<p>Rehner, S.A &amp; Uecker, F.A. (1994) Nuclear ribosomal internal transcribed spacer phylogeny and host diversity in the coelomycete <em>Phomopsis</em>. <em>Canadian Journal of Botany</em> 72: 1666–1674.&nbsp; https://doi.org/10.1139/b94-204</p>
<p>Santos, J.M., Correia, V.G. &amp; Phillips, A.J.L. (2010) Primers for mating-type diagnosis in <em>Diaporthe</em> and <em>Phomopsis</em>: their use in teleomorph induction in vitro and biological species definition. <em>Fungal Biology</em> 114: 255–270. https://doi.org/10.1016/j.funbio.2010.01.007</p>
<p>Santos, J.M., Vrandečić, K., Ćosić, J., Duvnjak, T. &amp; Phillips, A.J.L. (2011) Resolving the <em>Diaporthe</em> species occurring on soybean in Croatia. <em>Persoonia: Molecular Phylogeny and Evolution of Fungi</em> 27: 9–19. https://doi.org/10.3767/003158511X603719</p>
<p>Saravanakumar, K., Sriram, B., Sathiyaseelan, A., Hu, X., Mariadoss, A.V.A., MubarakAli, D. &amp; Wang, M.H. (2021) Molecular identification, volatile metabolites profiling, and bioactivities of an indigenous endophytic fungus (<em>Diaporthe</em> sp.). <em>Process Biochemistry</em> 102: 72–81.&nbsp; https://doi.org/10.1016/j.procbio.2020.12.002</p>
<p>Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. <em>Bioinformatics</em> 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033</p>
<p>Su, H., Kang, J.C., Cao, J.J., Mo, L. &amp; Hyde, K.D. (2014) Medicinal plant endophytes produce analogous bioactive compounds.<em> Chiang Mai Journal of Science </em>41 (1): 1–13.</p>
<p>Thompson, S.M., Tan, Y.P., Shivas, R.G., Neate, S.M., Morin, L., Bissett, A. &amp; Aitken, E.A.B. (2015) Green and brown bridges between weeds and crops reveal novel <em>Diaporthe</em> species in Australia. <em>Persoonia: Molecular Phylogeny and Evolution of Fungi</em> 35: 39–49. https://doi.org/10.3767/003158515X687506</p>
<p>Thompson, S.M., Tan, Y.P., Young, A.J., Neate, S.M., Aitken, E.A. &amp; Shivas, R.G. (2011) Stem cankers on sunflower (<em>Helianthus annuus</em>) in Australia reveal a complex of pathogenic <em>Diaporthe</em> (<em>Phomopsis</em>) species. <em>Persoonia</em> 27: 80–89.&nbsp; https://doi.org/10.3767/003158511X617110</p>
<p>Udayanga, D., Castlebury, L.A., Rossman, A.Y. &amp; Hyde, K.D. (2014) Species limits in <em>Diaporthe</em>: molecular re-assessment of <em>D. citri</em>, <em>D. cytosporella</em>, <em>D. foeniculina</em> and <em>D. rudis</em>. <em>Persoonia:</em> <em>Molecular Phylogeny and Evolution of Fungi</em> 32: 83–101. https://doi.org/10.3767/003158514X679984</p>
<p>Udayanga, D., Liu, X., Crous, P.W., McKenzie, E.H., Chukeatirote, E. &amp; Hyde, K.D. (2012) A multi-locus phylogenetic evaluation of <em>Diaporthe</em> (<em>Phomopsis</em>). <em>Fungal diversity</em> 56 (1): 157–171. https://doi.org/10.1007/s13225-012-0190-9</p>
<p>Udayanga, D., Xingzhong, L., McKenzie, E.H.C., Chukeatirote, E., Bahkali, A.H.A. &amp; Hyde, K.D. (2011) The genus <em>Phomopsis</em>: biology, applications, species concepts and names of common pathogens. <em>Fungal Diversity</em> 50: 189–225. https://doi.org/10.1007/s13225-011-0126-9</p>
<p>Uecker, F.A. (1988) A world list of <em>Phomopsis</em> names with notes on nomenclature, morphology and biology. <em>Mycologia Memoir</em> 13: 1–231.</p>
<p>Vaidya, G., Lohman, D.J. &amp; Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. <em>Cladistics</em> 27 (2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x</p>
<p>Wang, X., Guo, Y., Du, Y., Yang, Z., Huang, X., Hong, N., Xu, W. &amp; Wang, G. (2021) Characterization of <em>Diaporthe</em> species associated with peach constriction canker, with two novel species from China. <em>MycoKeys</em> 80: 77–90.&nbsp; https://doi.org/10.3897/mycokeys.80.63816</p>
<p>Wehmeyer, L.E. (1933) The genus <em>Diaporthe</em> Nitschke and its segregates. <em>University of Michigan Studies, Science Series</em> 9: 1–349.</p>
<p>Yang, Q., Fan, X.L., Guarnaccia, V. &amp; Tian, C.M. (2018) High diversity of <em>Diaporthe</em> species associated with dieback diseases in China, with twelve new species described. <em>MycoKeys</em> 39: 97–149. https://doi.org/10.3897/mycokeys.39.26914</p>
<p>Yang, Q., Jiang, N. &amp; Tian, C.M. (2020) Three new <em>Diaporthe</em> species from Shaanxi province, China. <em>MycoKeys</em> 67: 1–18. https://doi.org/10.3897/mycokeys.67.49483</p>
<p>Yang, Q., Jiang, N. &amp; Tian, C.M. (2021) New species and records of <em>Diaporthe</em> from Jiangxi Province, China. <em>MycoKeys</em> 77: 41–64. https://doi.org/10.3897/mycokeys.77.59999</p>
<p>Ying, Z., Yan, M., Zhou, M., He, X. &amp; Cheng, R. (2021) Characterization of the complete chloroplast genome of the medicinal plant <em>Orixa japonica</em> (<em>Rutaceae</em>) in Zhejiang Province and its phylogenetic analysis within family <em>Rutaceae</em>. <em>Mitochondrial DNA Part B</em> 6: 1734–1736. https://doi.org/10.1080/23802359.2021.1931511</p>