Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-04-06
Page range: 221–255
Abstract views: 29
PDF downloaded: 1

Phylogenetic approach for identification and life cycles of Puccinia (Pucciniaceae) species on Carex (Cyperaceae) from northeastern China

Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, China, Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai’an 271000, China
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, China
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, China, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
Monocots Pucciniales Rust Species differentiation Taxonomy

Abstract

About 150 species of Puccinia on Carex (Cyperaceae) have been reported globally. However, these species can be difficult to identify due to similarities in morphology and difficulties in identifying the host plants. The presence of many cryptic species is also suspected. Based on about 130 specimens on Carex and about 40 related specimens of spermogonial and aecial stages, all collected in northeastern China, a phylogenetic approach was conducted to clarify their identification and life cycles. In the phylogenetic analyses, 17 clades among specimens on Carex were detected. Each clade was interpreted as an independent species, although many clades were morphologically similar to each other. After comparative morphology with species previously reported, seven species including three first records in China (P. circaeae-caricis, P. urticae-inflatae and P. vaginatae) were identified, while ten species (P. caricis-artemisiae, P. caricis-atractylodes, P. caricis-hebeiensis, P. caricis-jilinensis, P. caricis-lactucae, P. caricis-pediformis, P. caricis-rafaensis, P. caricis-ribicola, P. caricis-tenuiformis and P. caricis-violae) are described as new. In uredinial and telial stages, many host plant species could not be identified as they lacked an inflorescence. Thus, a phylogenetic approach is more suitable for species identifications of Puccinia on Carex rather than relying on rust morphology and host plant identification. Life cycle relations for 12 spermogonial and aecial species were also clarified using phylogenetic analyses. Furthermore, it is suspected that Puccinia species on Carex can be differentiated into species based on their spermogonial and aecial stages on the same or related host plants. Additionally, one new replacement name (P. caricis-aphanolepidis) for P. pulchella is proposed.

References

<p>Abbasi, M., Stephen, B., Goodwin, B. &amp; Scholler, M. (2005) Taxonomy, phylogeny, and distribution of <em>Puccinia graminis</em>, the black stem rust: new insights based on rDNA sequence data.<em> Mycoscience</em> 46: 241–247. https://doi.org/10.1007/s10267-005-0244-x</p>
<p>Aime, M.C. (2006) Toward resolving family-level relationships in rust fungi (<em>Uredinales</em>). <em>Mycoscience</em> 47: 112–122. https://doi.org/10.1007/s10267-006-0281-0</p>
<p>Aime, M.C., Bell, C.D. &amp; Wilson, A.W. (2018) Deconstructing the evolutionary complexity between rust fungi (<em>Pucciniales</em>) and their plant hosts. <em>Studies in Mycology</em> 89: 143–152. https://doi.org/10.1016/j.simyco.2018.02.002</p>
<p>Aime, M.C. &amp; McTaggart, A.R. (2021) A higher-lank classification for rust fungi, with notes on genera.<em> Fungal Systematics and Evolution</em> 7: 21–47. https://doi.org/10.3114/fuse.2021.07.02</p>
<p>Aime, M.C., McTaggart, A.R., Mondo, S.J. &amp; Duplessis, S. (2017) Phylogenetics and phylogenomics of rust fungi. <em>Advances in Genetics</em> 100: 267–307. https://doi.org/10.1016/bs.adgen.2017.09.011</p>
<p>Arthur, J.C. (1934) <em>Manual of the rusts in United States and Canada</em>. Purdue Research Foundation, USA.</p>
<p>Azbukina, Z.M. (2005) <em>Rust fungi, Cryptogamic plants, fungi and mosses of the Russian Far East</em>, vol. 5. Dalnauka, Vladivostok, Russia.</p>
<p>Azbukina, Z.M. (2015) <em>Definitorium fungorum Rossiae, Ordo Pucciniales </em>1. Dal’nauka, Vladivostok, Russia.</p>
<p>Berlin, A., Wallenhammar, A.C. &amp; Andersson, B. (2018) Population differentiation of <em>Puccinia coronata</em> between hosts–implications for the epidemiology of oat crown rust. <em>European Journal of Plant Pathology</em> 152: 901–907. https://doi.org/10.1007/s10658-018-01605-x</p>
<p>Cunningham, G.H. (1931) <em>The rust fungi of New Zealand</em>. John McIndoe Printer, Dunedin, New Zealand.</p>
<p>Cummins, G.B. (1951) Uredinales of continental China collected by S. Y. Cheo II. <em>Mycologia</em> 43: 78–98.</p>
<p>Cummins, G.B. &amp; Hiratsuka, Y. (2003) <em>Illustrated genera of rust fungi</em>, 3<sup>rd</sup> ed. American Phytopathological Society, St. Paul, Minnesota, USA.</p>
<p>Dixon, L.J., Castlebury, L.A., Aime, M.C., Glynn, N.C. &amp; Comstock, J.C. (2010) Phylogenetic relationships of sugarcane rust fungi. <em>Mycological Progress </em>9: 459–468. https://doi.org/10.1007/s11557-009-0649-6</p>
<p>Engkhaninun, J., Ono, Y. &amp; Kakishima, M. (2005) Phylogenetic relationships of four <em>Puccinia</em> species parasitic on <em>Artemisia</em> in Japan. <em>Mycoscience</em> 46: 61–65. https://doi.org/10.1007/S10267-004-0213-9</p>
<p>Gäumann, E. (1959) <em>Die Rostpilze Mitteleuropas</em>. Buchdruckerei Bucheler Co, Bern, Germany.</p>
<p>Harada, Y. (1977) <em>Puccinia caricis-circaearum</em>, sp. nov., heteroecious <em>Carex</em> rust fungus from Japan. <em>Transactions of Mycological Society of Japan</em> 18: 375–380.</p>
<p>Harada, Y. (1984) Materials for the rust flora of Japan IV. <em>Transactions of Mycological Society of Japan</em> 25: 287–294.</p>
<p>Harada, Y. (1986) Four new species of heteroecious <em>Puccinia</em> (Uredinales) on <em>Carex</em> from Japan. <em>Transactions of Mycological Society of Japan</em> 27: 357–370.</p>
<p>Hasler, A. (1930) Beitrage zur Kenntnis einiger <em>Carex</em>-Puccinien. <em>Annales Mycologici</em> 28: 345–357.</p>
<p>Hiratsuka, N. (1960) A provisional list of <em>Uredinales</em> of Japan proper and the Ryukyu Islands. <em>The Science Bulletin of the Division of Agriculture, Home Economics and Engineering, University of Ryukyus</em> 7: 189–314.</p>
<p>Hiratsuka, N. &amp; Chen, Z.C. (1991) A list of Uredinales collected from Taiwan. <em>Transactions of Mycological Society of Japan</em> 32: 3–22.</p>
<p>Hiratsuka, N., Sato, S., Katsuya, K., Kakishima, M., Hiratsuka, Y., Kaneko, S., Ono, Y., Sato, T., Harada, Y., Hiratsuka, T. &amp; Nakayama, K. (1992) <em>The rust flora of Japan</em>. Tsukuba-shuppankai, Tsukuba, Japan.</p>
<p>Hiratsuka, Y. &amp; Sato, S. (1982) Morphology and taxonomy of rust fungi. <em>In</em>: Scott, K.J. &amp; Chakravorty, A.K. (Eds.)<em> The rust fungi.</em> Academic Press, London, UK, pp. 1–36.</p>
<p>Hrabětová, M., Kolařík, M. &amp; Marková, J. (2015) Phylogeny and taxonomy of grass rusts with aecia on <em>Ranunculus</em> and <em>Ficaria</em>. <em>Mycological Progress</em> 14: 12. https://doi.org/10.1007/s11557-015-1033-3</p>
<p>Hylander, N., Jørstad, I. &amp; Nannfeldt, J.A. (1953) Enumeratio Uredinearum Scandinavicarum. <em>Opera Botany</em> 1: 1–102.</p>
<p>Ito, S. (1950) <em>Mycological flora of Japan</em>, vol. 2, no. 3. Yokendo, Tokyo, Japan.</p>
<p>Ito, S. &amp; Homma, Y. (1938) Notae mycologicae Asiae orientalis 3. <em>Tranzactions Sapporo Natural History Society </em>15: 113–128.</p>
<p>Ji, J.X., Li, Z., Wan, Q., Li, Y. &amp; Kakishima, M. (2016) Notes on rust fungi in China 1. Autoecious life cycle of <em>Puccinia tatarinovii</em> on <em>Prenanthes.</em> <em>Mycotaxon</em> 131: 653–661.</p>
<p>Ji, J.X., Li, Z., Wan, Q., Li, Y. &amp; Kakishima, M. (2017) Notes on rust fungi in China 3. <em>Puccinia</em> <em>adenocauli</em> comb. nov. and its life cycle and new host. <em>Mycotaxon</em> 132: 141–148.</p>
<p>Ji, J.X., Li, Z., Li, Y. &amp; Kakishima, M. (2019a) Two new species of<em> Pucciniastrum </em>producing dimorphic sori and spores from northeast of China. <em>Mycological Progress</em> 18: 529–540. https://doi.org/10.1007/s11557-018-1460-z</p>
<p>Ji, J.X., Li, Z., Li, Y. &amp; Kakishima, M. (2019b) Life cycle of <em>Nothoravenelia japonic</em>a and its phylogenetic position in <em>Pucciniales</em>, with special reference to the genus <em>Phakopsora. Mycological Progress</em> 18: 855–864. https://doi.org/10.1007/s11557-019-01496-0</p>
<p>Ji, J.X., Li, Z., Li, Y. &amp; Kakishima, M. (2019c) Notes on rust fungi in China 7. <em>Aecidium caulophylli</em> life cycle inferred from phylogenetic evidence and renamed as <em>Puccinia caulophylli</em> comb. nov. <em>Mycotaxon </em>134: 719–730. https://doi.org/10.5248/134.719</p>
<p>Ji, J.X., Li, Z., Li, Y. &amp; Kakishima, M. (2020a) Notes on rust fungi in China 8. <em>Pucciniastrum tiliae </em>life cycle and new host plants inferred from phylogenetic evidence. <em>Mycotaxon</em> 135: 491–500. https://doi.org/10.5248/135.491</p>
<p>Ji, J.X., Li, Z., Li, Y. &amp; Kakishima, M. (2020b) Life cycle and taxonomy of <em>Chrysomyxa</em> <em>succinea</em> in China and phylogenetic positions of <em>Caeoma</em> species on <em>Rhododendron.</em> <em>Forest Pathology</em> 50: e12585. https://doi.org/10.1111/efp.12585</p>
<p>Ji, J.X., Li, Z., Li, Y. &amp; Kakishima, M. (2020c) Life cycle and taxonomy of <em>Melampsora</em> <em>abietis-populi</em> in China and its phylogenetic position in <em>Melampsora</em> on <em>Populus. Mycological Progress</em> 19: 1281–1291. https://doi.org/10.1007/s11557-020-01624-1</p>
<p>Ji, J.X., Li, Z., Li, Y. &amp; Kakishima, M. (2022) Phylogenetic approach for identification and life cycles of <em>Puccinia</em> (Pucciniaceae) species on Poaceae from northeastern China. <em>Phytotaxa </em>533 (1): 1–48. https://doi.org/10.11646/phytotaxa.533.1.1</p>
<p>Jørstad, I. (1954) The rust on Cyperaceae and Iridaceae in Norway. <em>Skrifter Norske Vidensk Akademie </em>1954: 1–28.</p>
<p>Juel, O. (1893) Om nagra heteroeciska Uredineer. <em>Botaniska Notiser </em>1892-1893: 51–57.</p>
<p>Kakishima, M., Yokoi, M. &amp; Harada, Y. (1999) <em>Puccinia carici-adenocauli,</em> a new rust fungus on <em>Carex,</em> and its anamorph, <em>Aecidium adenocauli.</em> <em>Mycoscience</em> 40: 503–507.</p>
<p>Kakishima, M. &amp; Sato, S. (1980) Three <em>Puccinia</em> species on <em>Carex</em>. <em>Transactions of Mycological Society of Japan</em> 21: 35–45.</p>
<p>Kakishima, M. &amp; Sato, S. (1983)<em> Puccinia kawakamiensis</em>, a new caricicolous rust, produces the aecial state on <em>Circaea erubescens</em>. <em>Transactions of Mycological Society of Japan</em> 24: 403–408.</p>
<p>Kenaley, S.C., Hudler, G.W. &amp; Bergstrom, G.C. (2016) Detection and phylogenetic relationships of <em>Puccinia emaculata </em>and <em>Uromyces graminicola </em>(<em>Pucciniales</em>) on switchgrass in New York State using rDNA sequence information. <em>Fungal Biology</em> 120: 791–806. https://doi.org/10.1016/j.funbio.2016.01.016</p>
<p>Kern, F.D. (1917) Noth American species of <em>Puccinia</em> on <em>Carex</em>. <em>Mycologia</em> 9: 205–238.</p>
<p>Kim, C.J. (1963) A provisional list of <em>Uredinales</em> of Korea. <em>Korean Journal of Microbiology</em> 1: 51–64.</p>
<p>Leppik, E.E. (1965) Some viewpoints on the phylogeny of rust fungi. V. Evolution of biological specialization. <em>Mycologia</em> 57: 6–22.</p>
<p>Leppik, E.E. (1967) Some viewpoints on the phylogeny of rust fungi. VI. Biogenic radiation. <em>Mycologia</em> 59: 568–579.</p>
<p>Liu, M. &amp; Hambleton, S. (2010) Taxonomic study of stripe rust, <em>Puccinia striiformis</em> sensu lato, based on molecular and morphological evidence. <em>Fungal Biology </em>114: 881–899.</p>
<p>Liu, M. &amp; Hambleton, S. (2013) Laying the formation for a taxonomic review of <em>Puccinia coronata</em> s.l. in a phylogenetic context. <em>Mycological Progress</em> 12: 63–89. https://doi.org/10.1007/s11557-012-0814-1</p>
<p>Maier, W., Wingfield, B.D., Mennicken, M. &amp; Wingfield, M.J. (2007) Polyphyly and two emerging lineages in the rust genera<em> Puccinia</em> and <em>Uromyces</em>. <em>Mycological Research</em> 111: 176–185. https://doi.org//10.1016/j.mycres.2006.11.005</p>
<p>McTaggart, A.R., Shivas. R.G., Van der Nest, M.A., Roux, J., Wingfield, B.D. &amp; Wingfield, M.J. (2016) Host jumps shaped the diversity of extant rust fungi (<em>Pucciniales</em>).<em> New Phytologist</em> 209: 1149–1158. https://doi.org/10.1111/nph.13686</p>
<p>Miura, M. (1928) <em>Flora of Manchuria and east Mongolia </em>Ⅲ<em>. Cryptogams, Fungi</em>. Minamimanshutetsudo, Dalian, China.</p>
<p>Ono, Y. (1983) Aecial stage of <em>Puccinia dioicae</em> var.<em> micropuncta</em>, var. nov. occurs on <em>Artemisia</em> in Japan. <em>Transactions of Mycological Society of Japan</em> 24: 1–6.</p>
<p>Ono, Y. (1995) <em>Aecidium alangii</em> is the aecial state of <em>Puccinia miyakei</em> (<em>Uredinales</em>). <em>Nova Hedwigia</em> 60: 157–164.</p>
<p>Ono, Y. (2008) Why life-cycle studies?: Implications in the taxonomy of rust fungi (Uredinales). <em>Nippon Kingakukai Kaiho</em> 49: 1–28. https://doi.org/10.18962/jjom.jjom.H19-01</p>
<p>Ono, Y. &amp; Kakishima, M. (1981) <em>Puccinia pulchella</em>: a new <em>Viola-Carex</em> rust from Japan. <em>Canadian Journal of Botany</em> 59: 1543–1546.</p>
<p>Padamsee, M. &amp; McKenzie, E.H.C. (2017) The intriguing and convoluted life of a heteroecious rust fungus in New Zealand. <em>Plant Pathology </em>66: 1248–1257. https://doi.org/10.1111/ppa.12672</p>
<p>Peck, C.H. (1873) Descriptions of new species of fungi. <em>Bulletin of the Buffalo Society of Natural Sciences</em> 1: 41–72.</p>
<p>Petersen, R.H. (1974) The rust fungus life cycle. <em>Botanical Review</em> 40: 453–513.</p>
<p>Rambaut, A. (2014) FigTree v1.4.2, A graphical viewer of phylogenetic trees. [https://tree.bio.ed.ac.uk/software/figtree/]</p>
<p>Roy, B.A., Vogler, D.R., Bruns, T.D. &amp; Szaro, T.M. (1998) Cryptic species in the <em>Puccinia</em> <em>monoica</em> complex. <em>Mycologia</em> 90: 846–853. https://doi.org/10.1080/00275514.1998.12026978</p>
<p>Sato, T. &amp; Sato, S. (1982) Aeciospore surface structure of the Uredinales. <em>Transactions of Mycological Society of Japan</em> 23: 51–63.</p>
<p>Sato, T. &amp; Sato, S. (1985) Morphology of aecia of the rust fungi. <em>Transactions of British Mycological Society </em>85: 223–238.</p>
<p>Semmouri, I., Bauters, K., Léveillé-Bourret, É., Starr, J.R., Goetghebeur, P. &amp; Larridon, I. (2019) Phylogeny and systematics of <em>Cyperaceae</em>, the evolution and importance of embryo morphology. <em>Botanical Review</em> 85: 1–39.</p>
<p>Spalink, D., Pender, J., Escudero, M., Hipp, A.L., Roalson, E.H., Starr, J.R., Waterway, M.J., Bohs, L. &amp; Sytsma, K.J. (2018) The spatial structure of phylogenetic and functional diversity in the United States and Canada: An example using the sedge family (<em>Cyperaceae</em>). <em>Journal of Systematics and Evolution</em> 56: 449–465.</p>
<p>Szabo, L. (2006) Deciphering species complexes: <em>Puccinia andropogonis</em> and <em>Puccinia</em> <em>coronata</em>, examples of differing modes of speciation.<em> Mycoscience</em> 47: 130–136.</p>
<p>Tai, F.L. (1979) <em>Sylloge fungorum Sinicorum</em>. Science Press, Beijing, China.</p>
<p>Taylor, J.W., Jacobson, D.J., Kroken, S., Kasuga, T., Geiser, D.M., Hibbett, D.S. &amp; Fischer, M.C. (2000) Phylogenetic species recognition and species concepts in fungi. <em>Fungal Genetics and Biology</em> 31: 21–32.</p>
<p>Termorshuizen, A.J. &amp; Swertz, C.A. (2011) <em>Dutch rust fungi</em>. Aad Termorsguizen, Netherland.</p>
<p>Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T.W., McNeill, J., Monro, A.M., Prado, J., Price, M.J. &amp; Smith, G.F. (2018) <em>International Code of Nomenclature for algae,</em> <em>fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum</em> <em>Vegetabile 159. </em>Koeltz Botanical Books, Glashütten.https://doi.org/10.12705/Code.2018</p>
<p>Van der Merwe, M.M., Walker, J., Ericson, L. &amp; Burdon, J.J. (2008) Coevolution with higher taxonomic host groups within the <em>Puccinia/Uromyces</em> rust lineage obscured by host jumps. <em>Mycological Research</em> 112: 1387–1408. https://doi.org/10.1016/j.mycres.2008.06.027</p>
<p>Wang, Y.C. (1951)<em> Index Uredinearum Sinensium</em>. Academia Sinica, Beijing, China.</p>
<p>Wilson, M. &amp; Henderson, D.M. (1966) <em>The British rust fungi</em>. Cambridge University Press, Cambridge, UK.</p>
<p>Zambino, P.J. &amp; Szabo, L.J. (1993) Phylogenetic relationships of selected cereal and grass rusts based on rDNA sequence analysis. <em>Mycologia</em> 85: 401–414. https://doi.org/10.1080/00275514.1993.12026292</p>
<p>Zhao, P., Kakishima, M., Wang, Q. &amp; Cai, L. (2017) Resolving the <em>Melampsora epitea</em> complex. <em>Mycologia</em> 109: 391–407. http://dx.doi.org/10.1080/00275514.2017.1326791</p>
<p>Zhao, P., Wang, Q.H., Tian, C.M. &amp; Kakishima, M. (2015) Integrating a numerical taxonomic method and molecular phylogeny for species delimitation of<em> Melampsor</em>a species (<em>Melampsoraceae</em>, <em>Pucciniales</em>) on willows in China. <em>PLoS ONE</em> 10: e0144883.https://doi.org/10.1371/journal.pone.0144883</p>
<p>Zhuang, J.Y., Wei, S.X. &amp; Wang, Y.C. (1998) <em>Flora fungorum Sinicorum</em>, vol.10, Uredinales (1). Science Press, Beijing, China.</p>