Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-02-02
Page range: 288-300
Abstract views: 40
PDF downloaded: 2

Porphyrosiphon annulatus sp. nov. (Oscillatoriales, Cyanobacteria) isolated on moist soil in Suwon, Republic of Korea

Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea
Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea
Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea
Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea
Porphyrosiphon annulatus radial thylakoid arrangement subaerophytic transversely annular lamellations Algae

Abstract

Porphyrosiphon annulatus sp. nov. belonging to Microcoleaceae, Oscillatoriales was collected from the moist soil under the rock in the Gwanggyo Mountain of Suwon City, Gyeonggi Province, Korea and cultured. Using the raw and cultured samples of the collected strains, we observed their morphological features through LM and TEM. Furthermore, their 16S rRNA gene and 16S–23S rRNA intergenic transcribed spacer (ITS) sequences were determined to be used phylogenetic analyses. We affirmed that thick sheath of the cells possessed transversely annular and longitudinal lamellations. The ultrastructure of thylakoids was a radial arrangement, which corresponds with a characteristic of the Microcoleaceae. In addition, P. annulatus displays the most similar morphology with type species P. notarisii; however, it differently holds the transversely annular lamellations with a shorter cell length and relatively dense trichome. Our 16S rRNA gene phylogeny showed that P. annulatus formed a clade with P. notarisii, and their DNA similarity was calculated to be 96.2%. The family Microcoleaceae was found to be paraphyletic with a distinct linage of the genus Porphyrosiphon. The ITS sequence of P. annulatus was unique in length and nucleotide composition, with different secondary structures of D1–D1ʹ and Box-B helices compared to those of close relatives. Overall, morphology and genetic traits of the Korean Porphyrosiphon suggest that P. annulatus should be considered to be a novel species.

References

<p>Anagnostidis, K. (1961) <em>Untersuchen über die Cyanophyceen einiger Thermen in Griechenland</em>. Institut für Systematische Botanik und Pflanzenphysiologie, Thesaloniki, 322 pp.</p>
<p>Anagnostidis, K. (1989) <em>Geitlerinema</em>, a new genus of oscillatorialean cyanophytes. <em>Plant Systematics and Evolution</em> 164: 33–46. https://dx.doi.org/10.1007/BF00940428</p>
<p>Anagnostidis, K. &amp; Komárek, J. (1988) Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. <em>Archiv für Hydrobiologie</em>, <em>Supplement</em> 80: 327–472.</p>
<p>Baker, A.F. &amp; Bold, H.C. (1970) Phycological Studies. X. Taxonomic studies in the Oscillatoriaceae.&nbsp;<em>University of Texas Publication</em>&nbsp;7004: 1–105.</p>
<p>Becerra-Absalón, I., Muñoz-Martín, M., Montejano, G. &amp; Mateo, P. (2019) Differences in the cyanobacterial community composition of biocrusts from the drylands of Central Mexico. Are there endemic species? <em>Frontiers in Microbiology</em> 10: 1–21. https://doi.org/10.3389/fmicb.2019.00937</p>
<p>Casamatta, D.A., Vis, M.L. &amp; Sheath, R.G. (2003) Cryptic species in cyanobacterial systematics: a case study of <em>Phormidium retzii</em> (Oscillatoriales) using 16S rDNA and RAPD analyses. <em>Aquatic Botany</em> 77: 295–309. https://doi.org/10.1016/j.aquabot.2003.08.005</p>
<p>Casamatta, D., Stanić, D., Gantar, M. &amp; Richardson, L.L. (2012) Characterization of <em>Roseofilum</em> <em>reptotaenium</em> (Oscillatoriales, Cyanobacteria) <em>gen</em>. et <em>sp</em>. <em>nov</em>. isolated from Caribbean black band disease. <em>Phycologia</em> 51: 489–499. https://doi.org/10.2216/11-10.1</p>
<p>De Toni, G.B. (1892) <em>Sylloge algarum omnium hucusque cognitarum</em>. <em>Vol</em>. 2. Bacillarieae; sectio II. Pseudoraphideae. Typis Seminarrii, Patavii, pp. 491–817</p>
<p>Drouet, F. (1937) The Brazilian Myxophyceae. I. <em>American Journal of Botany</em> 24: 598–608.</p>
<p>Dvořák, P., Jahodářová, E., Hašler, P., Gusev, E. &amp; Poulíčková, A. (2015) A new tropical cyanobacterium <em>Pinocchia polymorpha</em> <em>gen</em>. et<em> sp</em>. <em>nov</em>. derived from the genus <em>Pseudanabaena</em>. <em>Fottea</em> 15: 113–120. https://doi.org/10.5507/fot.2015.010</p>
<p>Fritsch, F.E. &amp; Rich, F. (1924) Contributions to our knowledge of the freshwater Algae of Africa. 4. Freshwater and subaerial algae from Natal.&nbsp;<em>Transactions of the Royal Society of South Africa</em>&nbsp;11: 297–398.</p>
<p>Gardner, N.L. (1927) New Myxophyceae from Porto Rico.&nbsp;<em>Memoirs of the New York Botanical Garden</em>&nbsp;7: 1–144, pls. 1–23.</p>
<p>Geitler, L. (1932) Cyanophycceae. <em>In</em>: Rabenhorst, L. (Ed.) <em>Kryptogamen-Flora von Deutschland, Österreich und der Schweiz.</em> <em>Vol</em>. 14. Akademische Verlagsgesellschaft, Leipzig, pp. 1–1196.</p>
<p>Gomont, M. (1892) Monographie des Oscillariées (Nostocacées Homocystées). Deuxième partie. -Lyngbyées. <em>Annales des Sciences Naturelles, Botanique</em>, <em>Série</em> 7 15: 263–368; 16: 91–264.</p>
<p>Genuário, D.B., Vieira Vaz, M.G.M., Hentschke, G.S., Sant’Anna, C.L. &amp; Fiore, M.F. (2015) <em>Halotia</em> <em>gen</em>. <em>nov</em>., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. <em>International Journal of Systematic and Evolutionary Microbiology</em> 65: 663–675. https://doi.org/10.1099/ijs.0.070078-0</p>
<p>Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. &amp; Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. <em>Systematic Biology</em> 59: 307–321. https://doi.org/10.1093/sysbio/syq010</p>
<p>Guiry, M.D. &amp; Guiry, G.M. (2021) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. Available from: http://www.algaebase.org/ (accessed 1 April 2021).</p>
<p>Hašler, P., Dvořák, P., Johansen, J.R., Kitner, M., Ondřej, V. &amp; Poulíčková, A. (2012) Morphological and molecular study of epipelic filamentous genera <em>Phormidium</em>, <em>Microcoleus</em> and <em>Geitlerinema</em> (Oscillatoriales, Cyanophyta/Cyanobacteria). <em>Fottea</em> 12: 341–356. https://doi.org/10.5507/fot.2012.024</p>
<p>Hrouzek, P., Lukešová, A., Mareš, J. &amp; Ventura, S. (2013) Description of the cyanobacterial genus <em>Desmonostoc</em> <em>gen</em>. <em>nov</em>. including <em>D</em>. <em>muscorum</em> <em>comb. nov.</em> as a distinct, phylogenetically coherent taxon related to the genus Nostoc. <em>Fottea</em> 13: 201–213. https://doi.org/10.5507/fot.2013.016</p>
<p>Jaag, O. (1945) Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. <em>Beiträge zur Kryptogamenflora der Schweiz </em>(Bern) 9: 1–560.</p>
<p>Kaštovský, J., Veselá, J., Bohunická, M., Fučíková, K., Štenclová, L. &amp; Brewer-Carias, C. (2016) New and unusual species of cyanobacteria, diatoms and green algae, with a description of a new genus <em>Ekerewekia</em> <em>gen</em>. <em>nov</em>. (Chlorophyta) from the table mountain Churí-tepui, Chimantá Massif (Venezuela).&nbsp;<em>Phytotaxa</em>&nbsp;247: 153–180. https://dx.doi.org/10.11646/phytotaxa.247.3.1</p>
<p>Katoh, K. &amp; Stanley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. <em>Molecular Biology and Evolution</em> 30: 772–780. https://doi.org/10.1093/molbev/mst010</p>
<p>Kiel, G. &amp; Gaylarde, C.C. (2006) Bacterial diversity in biofilms on external surfaces of historic buildings in Porto Alegre. <em>World Journal of Microbiology and Biotechnology</em> 22: 293–297. https://doi.org/10.1007/s11274-005-9035-y</p>
<p>Kim, J.-H., Jeong, M.S., Kim, D.-Y., Her, S. &amp; Wie, M.-B. (2015) Zinc oxide nanoparticles induce lipoxygenase-mediated apoptosis and necrosis in human neuroblastoma SH-SY5Y cells. <em>Neurochemistry International </em>90: 204–214. https://doi.org/10.1016/j.neuint.2015.09.002</p>
<p>Kim, M., Oh, H.-S., Park, S.-C. &amp; Chun, J. (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. <em>International Journal of Systematic and Evolutionary Microbiology</em> 64: 346–351. https://doi.org/10.1099/ijs.0.059774-0</p>
<p>Kirchner, O. (1898) Schizophyceae. <em>In</em>: Engler, A. &amp; Prantl, K. (Eds.) <em>Die natürlichen Pflanzenfamilien</em>, 1. Teil, Abteilung a. Wilhelm Engelmann, Leipzig, pp. 45–92.</p>
<p>Komárek, J. (2016) A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. <em>European Journal of Phycology</em> 51: 346–353. https://doi.org/10.1080/09670262.2016.1163738</p>
<p>Komárek, J. &amp; Anagnostidis, K. (2005) Cyanoprokaryota. 2. Teil: Oscillatoriales. <em>In</em>: Büdel, B., Krienitz, L., Gärtner, G. &amp; Schagerl, M. (Eds.) <em>Süβwasserflora von Mitteleuropa</em>,<em> Vol</em>. 19/2. Elsevier, Spektrum, Heidelberg, pp. 1–759.</p>
<p>Komárek, J., Kaštovský, J., Mareš, J. &amp; Johansen, J.R. (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. <em>Preslia</em> 86: 295–335.</p>
<p>Komárek, J., Zapomělová, E., Šmarda, J., Kopecký, J., Rejmánková, E., Woodhouse, J., Neilan, B.A. &amp; Komárková, J. (2013) Polyphasic evaluation of <em>Limnoraphis</em> <em>robusta</em>, a water-bloom forming cyanobacterium from Lake Atitlán, Guatemala, with a description of <em>Limnoraphis</em> <em>gen</em>. <em>nov</em>. <em>Fottea</em> 13: 39–52. https://doi.org/10.5507/fot.2013.004</p>
<p>Kumar, S., Stecher, G., Li, M., Knyaz, C. &amp; Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms.<em> Molecular Biology and Evolution</em> 35: 1547–1549. https://doi.org/10.1093/molbev/msy096</p>
<p>Lee, N-J., Seo, Y., Ki, J.-S. &amp; Lee, O.-M. (2019) A study of newly recorded genus and species for aerial cyanobacteria <em>Wilmottia murrayi</em> (Oscillatoriales, Cyanobacteria) in Korea. <em>Korean Journal of Environmental Biology</em> 37: 260–267.&nbsp; https://doi.org/10.11626/KJEB.2019.37.3.260</p>
<p>Lee, N-J., Seo, Y., Ki, J.-S. &amp; Lee, O.-M. (2020) Morphology and molecular description of <em>Wilmottia koreana</em> <em>sp</em>. <em>nov</em>. (Oscillatoriales, Cyanobacteria) isolated from the Republic of Korea. <em>Phytotaxa</em> 447: 237–251. https://doi.org/10.11646/phytotaxa.447.4.2</p>
<p>Nguyen, L.T.T. Cronberg, G. Moestrup, O. &amp; Daugbjerg, N. (2013) <em>Annamia toxica gen</em>. et <em>sp</em>. <em>nov</em>.(Cyanobacteria), a freshwater cyanobacterium from Vietnam that produces microcystins: ultrastructure, toxicity and molecular phylogenetics. <em>Phycologia</em> 52: 25–36. https://doi.org/10.2216/10-097.1</p>
<p>Nowicka-Krawczyk, P., Mühlsteinová, R. &amp; Hauer, T. (2019) Detailed characterization of the <em>Arthrospira</em> type species separating commercially grown taxa into the new genus <em>Limnospira</em> (Cyanobacteria). <em>Scientific Reports</em> 9: 1–11. https://doi.org/10.1038/s41598-018-36831-0</p>
<p>Page, R.D.M. (1996) TreeView: an application to display of phylogenetic trees on personal computers. <em>Computer Applications in the Biosciences</em> 12: 357–358. https://doi.org/10.1093/bioinformatics/12.4.357</p>
<p>Richards, E., Reichardt, M. &amp; Rogers, S. (2003) Preparation of genomic DNA from plant tissue. <em>In:</em> Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. &amp; Struhl, K. (Eds.) <em>Current protocols in molecular biology</em>. John Wiley and Sons, Inc., New York, pp. 2.3.1–2.3.7.</p>
<p>Rippka, R., Waterbury, J. &amp; Cohen-Bazire, G. (1974) A cyanobacterium which lacks thylakoids. <em>Archives of Microbiology</em> 100: 419–436. https://doi.org/10.1007/BF00446333</p>
<p>Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. &amp; Stanier, R.Y. (1979) Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. <em>Journal of General Microbiology</em> 111: 1–61. https://doi.org/10.1099/00221287-111-1-1</p>
<p>Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. &amp; Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. <em>Systematic Biology</em> 61: 539–542. https://doi.org/10.1093/sysbio/sys029</p>
<p>Shariatmadari, Z., Moharrek, F., Riahi, H., Heidari, F. &amp; Aslani, E. (2017) Efficiency of partial 16S rRNA gene sequencing as molecular marker for phylogenetic study of cyanobacteria, with emphasis on some complex taxa. <em>Acta Biologica Szegediensis</em> 61: 59–68.</p>
<p>Siegesmund, M.A., Johansen, J.R., Karsten, U. &amp; Friedl, T. (2008) <em>Coleofasciculus</em> <em>gen</em>. <em>nov</em>. (Cyanobacteria): morphological and molecular criteria for revision of the genus <em>Microcoleus</em> Gomont. <em>Journal of Phycology</em> 44: 1572–1585. https://doi.org/10.1111/j.1529-8817.2008.00604.x</p>
<p>Strunecký, O., Bohunická, M., Johansen, J.R., Čapková, K., Raabová, L., Dvořák, P. &amp; Komárek, J. (2017) A revision of the genus <em>Geitlerinema</em> and a description of the genus <em>Anagnostidinema</em> <em>gen</em>. <em>nov</em>. (Oscillatoriophycidae, Cyanobacteria). <em>Fottea</em> 17: 114–126. https://doi.org/10.5507/fot.2016.025</p>
<p>Strunecký, O., Elster, J. &amp; Komárek, J. (2011) Taxonomic revision of the freshwater cyanobacterium “<em>Phormidium</em>” <em>murrayi</em> = <em>Wilmottia</em> <em>murrayi</em>. <em>Fottea</em> 11: 57–71.&nbsp; https://doi.org/10.5507/fot.2011.007</p>
<p>Strunecký, O., Komárek, J. &amp; Šmarda, J. (2014) <em>Kamptonema</em> (Microcoleaceae, Cyanobacteria), a new genus derived from the polyphyletic <em>Phormidium</em> on the basis of combined molecular and cytomorphological markers. <em>Preslia</em> 86: 193–207.</p>
<p>Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. <em>Nucleic Acids Research</em> 31: 3406–3415.&nbsp; https://doi.org/10.1093/nar/gkg595</p>