Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-12-17
Page range: 191-201
Abstract views: 25
PDF downloaded: 1

Paraboeremia yungensis sp. nov., a new fungal species isolated from Las Yungas, South America, with promising tyrosinase production potential

Planta Piloto de Procesos Industriales Microbiológicos y Biotecnología (PROIMI-CONICET). Av. Belgrano y Pje. Caseros, (T4001MVB) S. M. Tucumán, Tucumán, Argentina.
Universidad de Buenos Aires. Consejo Nacional de lnvestigaciones Cientificas. y Tecnicas. Instituto de Micología y Botánica (InMiBo). Facultad de Ciencias Exactas y Naturales, DBBE, Buenos Aires, Argentina.
Planta Piloto de Procesos Industriales Microbiológicos y Biotecnología (PROIMI-CONICET). Av. Belgrano y Pje. Caseros, (T4001MVB) S. M. Tucumán, Tucumán, Argentina. Universidad Nacional de Catamarca (UNCa). Facultad de Ciencias Exactas y Naturales. Centro de Biología Molecular y Biotecnología (CEBIOTEC). Av. Belgrano 300, (K4751XAK) S.F.V. Catamarca, Catamarca, Argentina.
Planta Piloto de Procesos Industriales Microbiológicos y Biotecnología (PROIMI-CONICET). Av. Belgrano y Pje. Caseros, (T4001MVB) S. M. Tucumán, Tucumán, Argentina.
Universidad de Buenos Aires. Consejo Nacional de lnvestigaciones Cientificas. y Tecnicas. Instituto de Micología y Botánica (InMiBo). Facultad de Ciencias Exactas y Naturales, DBBE, Buenos Aires, Argentina.
Didymellaceae morphology phylogeny taxonomy Fungi

Abstract

In the context of a bioprospection programme for tyrosinase/L-DOPA- and melanin-producing fungal strains for biotechnological purposes, a hyperproducer isolate was obtained from Las Yungas rainforest, a relevant biodiverse ecoregion in North-Western Argentina. The selected strain was preliminarily identified as Paraboeremia sp. This is, to the best of our knowledge, the first native reported species of this genus in South America. Single-gene and multi-locus analyses of the internal transcribed spacer nuclear ribosomal RNA gene region (ITS), partial large subunit 28S nrDNA region (LSU), RNA polymerase II region (RPB2) and partial β-tubulin gene (TUB2) alignments were carried out to define the phylogenetic identity of this strain. As part of a polyphasic identification approach, these results were combined with morphological studies of active cultures growing on malt extract, oatmeal and potato dextrose agar plates. Incubation was performed under diverse conditions to stimulate sporulation for the subsequent micromorphological analysis. Microphotographs of pycnidia and conidia were taken with a scanning electron microscope. Maximum likelihood and Bayesian Inference analyses supported the location of the strain within the genus Paraboeremia, whilst morphological features allowed distinguishing it from previously described species within this genus. Based on the results herein reported, the new South-American species Paraboeremia yungensis is described and proposed.

References

<p>Boerema, G.H. &amp; De Gruyter, J. (1992) Contributions towards a monograph of <em>Phoma</em> (Coelomycetes) I. <em>Persoonia</em> 15: 71–92.</p>
<p>Boerema, G.H. &amp; De Gruyter, J. (1997) Contributions towards a monograph of <em>Phoma</em> (Coelomycetes) IV. <em>Persoonia</em> 16: 335–371.</p>
<p>Boerema, G.H., De Gruyter, J., Noordeloos, M.E. &amp; Hamers, M.E.C. (2004) <em>Phoma </em>identification manual. Differentiation of specific and infra-specific taxa in culture.&nbsp; https://doi.org/10.1079/9780851997438.0000</p>
<p>Boom, R., Sol, C.J.A., Salimans, M.M.M., Jansen, C.L., Wertheim-Van Dillen, P.M.E. &amp; Van Der Noordaa, J. (1990) Rapid and simple method for purification of nucleic acids. <em>Journal of Clinical Microbiology</em> 28: 495–503.&nbsp; https://doi.org/10.1128/jcm.28.3.495-503.1990</p>
<p>Cabral, M.E., Delgado, O.D., Sampietro, D.A., Catalan, C.A., Figueroa, L.I.C. &amp; Fariña, J.I. (2010) Antifungal Activity and the Potential Correlation with Statin-Producing Ability: An Optimized Screening Applied to Filamentous Fungi from Las Yungas Subtropical Rainforest. <em>Research Journal of Microbiology</em> 5: 833–848.&nbsp; https://doi.org/10.3923/jm.2010.833.848</p>
<p>Cassago, A., Panepucci, R.A., Tortella Baião, A.M. &amp; Henrique-silva, F. (2002) Cellophane based mini-prep method for DNA extraction from the filamentous fungus <em>Trichoderma reesei</em>. <em>BMC Microbiology</em> 2: 14.&nbsp; https://doi.org/10.1186/1471-2180-2-14</p>
<p>Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. <em>Molecular Biology and Evolution</em> 17: 540–552.&nbsp; https://doi.org/10.1093/oxfordjournals.molbev.a026334</p>
<p>Chen, Q., Hou, L.W., Duan, W.J., Crous, P.W. &amp; Cai, L. (2017) Didymellaceae revisited. <em>Studies in Mycology</em> 87: 105–159. https://doi.org/10.1016/j.simyco.2017.06.002</p>
<p>Chen, Q., Jiang, J.R., Zhang, G.Z., Cai, L. &amp; Crous, P.W. (2015) Resolving the <em>Phoma</em> enigma. <em>Studies in Mycology</em> 82: 137–217. https://doi.org/10.1016/j.simyco.2015.10.003</p>
<p>Edgar, R.C. (2004) MUSCLE: A multiple sequence alignment method with reduced time and space complexity. <em>BMC Bioinformatics</em> 5: 113.&nbsp; https://doi.org/10.1186/1471-2105-5-113</p>
<p>Fuller, K.K., Loros, J.J. &amp; Dunlap, J.C. (2015) Fungal photobiology: visible light as a signal for stress, space and time. <em>Current Genetics</em> 61: 275–288. https://doi.org/10.1007/s00294-014-0451-0</p>
<p>De Gruyter, J., Aveskamp, M.M., Woudenberg, J.H.C., Verkley, G.J.M., Groenewald, J.Z. &amp; Crous, P.W. (2009) Molecular phylogeny of <em>Phoma</em> and allied anamorph genera: Towards a reclassification of the <em>Phoma</em> complex. <em>Mycological Research</em> 113: 508–519.&nbsp; https://doi.org/10.1016/j.mycres.2009.01.002</p>
<p>Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. <em>Nucleic Acids Symposium Series</em> 41: 95–98.</p>
<p>Hoog, G.S. &amp; Ende, A.H.G.G. (1998) Molecular diagnostics of clinical strains of filamentous Basidiomycetes. <em>Mycoses</em> 41: 183–189.&nbsp; https://doi.org/10.1111/j.1439-0507.1998.tb00321.x</p>
<p>Hou, L., Hernández-Restrepo, M., Groenewald, J.Z., Cai, L. &amp; Crous, P.W. (2020) Citizen science project reveals high diversity in Didymellaceae (Pleosporales, Dothideomycetes). <em>MycoKeys</em> 65: 49–99.&nbsp; https://doi.org/10.3897/mycokeys.65.47704</p>
<p>Huson, D.H. &amp; Scornavacca, C. (2012) Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. <em>Systematic Biology</em> 61: 1061–1067.&nbsp; https://doi.org/10.1093/sysbio/sys062</p>
<p>Hyde, K.D., Abd-Elsalam, K. &amp; Cai, L. (2010) Morphology: Still essential in a molecular world. <em>Mycotaxon</em> 114: 439–451.&nbsp; https://doi.org/10.5248/114.439</p>
<p>Ishiuchi, K., Hirose, D., Suzuki, T., Nakayama, W., Jiang, W.P., Monthakantirat, O., Wu, J. Bin, Kitanaka, S. &amp; Makino, T. (2018) Identification of <em>Lycopodium</em> Alkaloids Produced by an Ultraviolet-Irradiated Strain of <em>Paraboeremia</em>, an Endophytic Fungus from <em>Lycopodium serratum</em> var. <em>longipetiolatum</em>. <em>Journal of Natural Products</em> 81: 1143–1147. https://doi.org/10.1021/acs.jnatprod.7b00627</p>
<p>Jiang, J.R., Chen, Q. &amp; Cai, L. (2017) Polyphasic characterisation of three novel species of <em>Paraboeremia</em>. <em>Mycological Progress</em> 16: 285–295.&nbsp; https://doi.org/10.1007/s11557-016-1253-1</p>
<p>Kiiskinen, L.L., Rättö, M. &amp; Kruus, K. (2004) Screening for novel laccase-producing microbes. <em>Journal of Applied Microbiology</em> 97: 640–646.&nbsp; https://doi.org/10.1111/j.1365-2672.2004.02348.x</p>
<p>Krishnaveni, R., Rathod, V., Thakur, M.S. &amp; Neelgund, Y.F. (2009) Transformation of L-tyrosine to L-dopa by a novel fungus, <em>Acremonium</em> <em>rutilum</em>, under submerged fermentation. <em>Current Microbiology</em> 58: 122–128.&nbsp; https://doi.org/10.1007/s00284-008-9287-5</p>
<p>Kumar, S., Stecher, G. &amp; Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. <em>Molecular biology and evolution</em> 33: 1870–1874.&nbsp; https://doi.org/10.1093/molbev/msw054</p>
<p>Leach, C.M. (1962) Sporulation of Diverse Species of Fungi Under Near-Ultraviolet Radiation. <em>Canadian Journal of Botany</em> 40: 151–161.&nbsp; https://doi.org/10.1139/b62-016</p>
<p>Liu, Y.J., Whelen, S. &amp; Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. <em>Molecular Biology and Evolution</em> 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092</p>
<p>Miller, M.A., Pfeiffer, W. &amp; Schwartz, T. (2010) Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. <em>In: 2010 Gateway Computing Environments Workshop (GCE).</em> pp. 1–8.&nbsp; https://doi.org/10.1109/GCE.2010.5676129</p>
<p>Rambaut, A. (2017) FigTree-version 1.4. 3, a graphical viewer of phylogenetic trees.</p>
<p>Rambaut, A. &amp; Drummond, A.J. (2007) Tracer v1. 5.</p>
<p>Rayner, A. &amp; Boddy, L. (1988) Fungal decomposition of wood: its biology and ecology. <em>In</em>: John Wiley &amp; Sons Ltd. (ed.) <em>Amoebae and Myxomycetes</em>. Chichester, Sussex, pp. 132–134.</p>
<p>Rayner, R.W. (1972) A Mycological Colour Chart. <em>Mycologia</em> 64: 230. https://doi.org/10.2307/3758035</p>
<p>Rehner, S.A. &amp; Samuels, G.J. (1994) Taxonomy and phylogeny of <em>Gliocladium</em> analysed from nuclear large subunit ribosomal DNA sequences. <em>Mycological Research</em> 98: 625–634.&nbsp; https://doi.org/10.1016/S0953-7562(09)80409-7</p>
<p>Ronquist, F., Huelsenbeck, J.P. &amp; Teslenko, M. (2011) <em>Draft MrBayes version 3.2 manual: tutorials and model summaries.</em> pp. 1–105.</p>
<p>Roustaee, A., Dechamp-Guillaume, G., Gelie, B., Savy, C., Dargent, R. &amp; Barrault, G. (2000) Ultrastructural studies of the mode of penetration by <em>Phoma macdonaldii</em> in sunflower seedlings. <em>Phytopathology</em> 90: 915–920.&nbsp; https://doi.org/10.1094/PHYTO.2000.90.8.915</p>
<p>Rovati, J.I., Delgado, O.D., Figueroa, L.I.C. &amp; Fariña, J.I. (2010) A novel source of fibrinolytic activity: <em>Bionectria</em> sp., an unconventional enzyme-producing fungus isolated from Las Yungas rainforest (Tucumán, Argentina). <em>World Journal of Microbiology and Biotechnology</em> 26: 55–62.&nbsp; https://doi.org/10.1007/s11274-009-0142-z</p>
<p>Stalper, J.A. (1978) Identification of Wood-inhabiting Aphyllophorales in Pure Cul- ture. <em>Studies in Mycology</em> 16: 224–225.&nbsp; https://doi.org/10.1080/00275514.1942.12020904</p>
<p>Stamatakis, A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. <em>Bioinformatics</em> 30: 1312–1313.&nbsp; https://doi.org/10.1093/bioinformatics/btu033</p>
<p>Su, Y.Y., Qi, Y.L. &amp; Cai, L. (2012) Induction of sporulation in plant pathogenic fungi. <em>Mycology</em> 3: 195–200.&nbsp; https://doi.org/10.1080/21501203.2012.719042</p>
<p>Sung, G.H., Sung, J.M., Hywel-Jones, N.L. &amp; Spatafora, J.W. (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. <em>Molecular Phylogenetics and Evolution</em> 44: 1204–1223.&nbsp; https://doi.org/10.1016/j.ympev.2007.03.011</p>
<p>Valenzuela-Lopez, N., Cano-Lira, J.F., Guarro, J., Sutton, D.A., Wiederhold, N., Crous, P.W. &amp; Stchigel, A.M. (2018) Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. <em>Studies in Mycology</em> 90: 1–69.&nbsp; https://doi.org/10.1016/j.simyco.2017.11.003</p>
<p>Vilgalys, R. &amp; Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several <em>Cryptococcus</em> species. <em>Journal of Bacteriology</em> 172: 4238–4246.&nbsp; https://doi.org/10.1128/jb.172.8.4238-4246.1990</p>
<p>Volossiouk, T., Robb, E.J. &amp; Nazar, R.N. (2021) Direct DNA extraction for PCR-mediated assays of soil organisms. <em>Applied and Environmental Microbiology</em> 61: 3972–3976. https://doi.org/10.1128/aem.61.11.3972-3976.1995</p>
<p>White, T.J., Bruns, T., Lee, S. &amp; Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. <em>In: PCR Protocols: A Guide to Methods and Applications</em>. Academic Press, Inc., pp. 315–322.&nbsp; https://doi.org/10.1016/B978-0-12-372180-8.50042-1</p>
<p>Woudenberg, J.H.C., Aveskamp, M.M., De Gruyter, J., Spiers, A.G. &amp; Crous, P.W. (2009) Multiple <em>Didymella</em> teleomorphs are linked to the <em>Phoma clematidina</em> morphotype. <em>Persoonia: Molecular Phylogeny and Evolution of Fungi</em> 22: 56–62. https://doi.org/10.3767/003158509X427808</p>
<p>Yang, J., Stadler, M., Chuang, W.Y., Wu, S. &amp; Ariyawansa, H.A. (2020) In vitro inferred interactions of selected entomopathogenic fungi from Taiwan and eggs of <em>Meloidogyne graminicola</em>. <em>Mycological Progress</em> 19: 97–109.&nbsp; https://doi.org/10.1007/s11557-019-01546-7</p>
<p>Zimowska, B. (2011) Conidiogenesis of <em>Phoma strasseri</em> the fungus responsible for black stem and rhizomes rot in peppermint (<em>Mentha piperita</em>). <em>Acta Scientiarum Polonorum, Hortorum Cultus</em> 10: 171–178.</p>