Abstract
The Macrotermitinae termites, the only lineage that maintains and cultivates Termitomyces species as nutritional ectosymbionts, resemble human agricultural activities. Found in savannah and rainforest ecosystems across Africa and Asia, these termites enhance the physical and chemical properties of soil and influence the composition of microbial communities. However, fungus-growing termites also pose significant threats to agriculture and forestry. Termitomyces species, dominant fungi propagated within biomass-containing cork-like structures (“fungus comb”), also contain trace amounts of non-termitomyces fungi. In the summer of 2022, we collected combs of the subterranean fungus-growing termites that cultivate Termitomyces aurantiacus from the Xishuangbanna Tropical Botanical Garden. To validate our results, we used a culture-dependent method to isolate fungi residing in termite fungus gardens. This method was further validated by confirming their taxonomic classification through morphological and phylogenetic results. The findings of these studies led to the identification of one new (Geotrichum xishuangbannaensis) and four known (Paecilomyces formosus, Paecilomyces lagunculariae, Pleurostoma richardsiae, and Pseudallescheria angusta) species. We provide comprehensive descriptions, photographic illustrations of morphological characteristics, and phylogenetic trees of the taxa.
References
- Aanen, D.K., Eggleton, P., Rouland-Lefevre, C., Guldberg-Frøslev, T., Rosendahl, S. & Boomsma, J.J. (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences 99: 14887–14892. https://doi.org/10.1073/pnas.222313099
- Abrantes, R.A., Refojo, N., Hevia, A.I., Fernández, J., Isla, G., Córdoba, S., Dávalos, M.F., Lubovich, S., Maldonado, I., Davel, G.O. & Stchigel, A.M. (2021) Scedosporium spp. from clinical setting in Argentina, with the proposal of the new pathogenic species Scedosporium americanum. Journal of Fungi 7: 160. https://doi.org/10.3390/jof7030160
- Agarwal, R., Gupta, M., Sen, R., Panchal, A., ES, N. & Raychoudhury, R. (2024) Investigation into how Odontotermes obesus maintains a predominantly Termitomyces monoculture in their fungus combs suggests a potential partnership with both fungi and bacteria. Communications Biology 7: 1010. https://doi.org/10.1038/s42003-024-06708-2
- Aguero, C.M., Eyer, P.A., Crippen, T.L. & Vargo, E.L. (2021) Reduced environmental microbial diversity on the cuticle and in the galleries of a subterranean termite compared to surrounding soil. Microbial Ecology 81: 1054–1063. https://doi.org/10.1007/s00248-020-01664-w
- Ahmad, F., Yang, G., Zhu, Y., Poulsen, M., Li, W., Yu, T. & Mo, J. (2022) Tripartite symbiotic digestion of lignocellulose in the digestive system of a fungus-growing termite. Microbiology Spectrum 10: e01234–22. https://doi.org/10.1128/spectrum.01234-22
- Ali, S.S., Al-Tohamy, R., Mahmoud, Y.A.G., Kornaros, M., Sun, S. & Sun, J. (2022) Recent advances in the life cycle assessment of biodiesel production linked to azo dye degradation using yeast symbionts of termite guts: A critical review. Energy Reports 8: 7557–7581. https://doi.org/10.1016/j.egyr.2022.05.240
- Alves, A., Crous, P.W., Correia, A. & Phillips, A.J.L. (2008) Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity 28: 1–13.
- Barcoto, M.O., Carlos-Shanley, C., Fan, H., Ferro, M., Nagamoto, N.S., Bacci Jr, M., Currie, C.R. & Rodrigues, A. (2020) Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment. Scientific Reports 10: 12384. https://doi.org/10.1038/s41598-020-68448-7
- Biedermann, P.H.W. & Vega, F.E. (2020) Ecology and evolution of insect-fungus mutualisms. Annual Review of Entomology 65: 431–455. https://doi.org/10.1146/annurev-ento-011019-024910
- Bodawatta, K.H., Poulsen, M. & Bos, N. (2019) Foraging Macrotermes natalensis fungus-growing termites avoid a mycopathogen but not an entomopathogen. Insects 10: 185. https://doi.org/10.3390/insects10070185
- Bridge, P. & Spooner, B. (2001) Soil fungi: diversity and detection. Plant and Soil 232: 147–154. https://doi.org/10.1023/A:1010346305799
- Bulla, L.M.C., Polonio, J.C., Portela-Castro, A.L.D.B., Kava, V., Azevedo, J.L. & Pamphile, J.A. (2017) Activity of the endophytic fungi Phlebia sp. and Paecilomyces formosus in decolourisation and the reduction of reactive dyes’ cytotoxicity in fish erythrocytes. Environmental Monitoring and Assessment 189: 1–11. https://doi.org/10.1007/s10661-017-5790-0
- Calvo-Peña, C., Burgos, M., Diez-Galán, A., Ibáñez, A., Coque, J.J.R. & Cobos, R. (2022) First report of Pleurostoma richardsiae associated with twig and branch dieback of olive trees in Spain. Plant Disease 106: 1981. https://doi.org/10.1094/PDIS-10-21-2127-PDN
- Carbone, I. & Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 9: 553–556. https://doi.org/10.1080/00275514.1999.12061051
- Carlucci, A., Cibelli, F., Lops, F., Phillips, A.J.L., Ciccarone, C. & Raimundo, M.L. (2015) Pleurostomophora richardsiae associated with trunk diseases of grapevine in southern Italy. Phytopathologia Mediterranea 54: 109–123. https://doi.org/10.14601 /Phytopathol_Mediterr-15257
- Chen, Q.L., Hu, H.W., Yan, Z.Z., Li, C.Y., Nguyen, B.A.T., Zheng, Y., Zhu, Y.G. & He, J.Z. (2021) Termite mounds reduce soil microbial diversity by filtering rare microbial taxa. Environmental Microbiology 23: 2659–2668. https://doi.org/10.1111/1462-2920.15507
- Constantino, R. (2002) The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology 126: 355–365. https://doi.org/10.1046/j.1439-0418.2002.00670.x
- Cowie, R.H., Wood, T.G., Barnett, E.A., Sands, W.A. & Black, H.I.J. (1990) A checklist of the termites of Ethiopia with a review of their biology, distribution and pest status. African Journal of Ecology 28: 21–33. https://doi.org/10.1111/j.1365-2028.1990.tb01133.x
- Dar, M.A., Xie, R., Zabed, H.M., Ali, S., Zhu, D. & Sun, J. (2024) Termite microbial symbiosis as a model for innovative design of lignocellulosic future biorefinery: current paradigms and future perspectives. Biomass 4: 180–201. https://doi.org/10.3390/biomass4010009
- De Hoog, G.S., Guarro, J., Gene, J. & Figueras, M.J. (2000) Atlas of clinical fungi. 2nd edn. Centraalbureau voor Schimmelcultures. Utrecht, The Netherlands, pp. 276–282.
- De Hoog, G.S. & Smith, M.T. (2011) Dipodascus de Lagerheim (1892). In: Kurtzman, C., Fell, J. & Boekhout, T. (Eds.) The yeasts: a taxonomic study. 5th edn ed. Elsevier, New York, pp. 385–395. https://doi.org/10.1016/B978-0-444-52149-1.00027-6
- De Hoog, G.S., Smith, M.T. & Smith, M.T. (2004) Ribosomal gene phylogeny and species delimitation in Geotrichum and its teleomorphs. Studies in Mycology 50: 489–515.
- Fricke, J., Schalk, F., Kreuzenbeck, N.B., Seibel, E., Hoffmann, J., Dittmann, G., Conlon, B.H., Guo, H., de Beer, Z.W., Vassão, D.G., Gleixner, G., Poulsen, M. & Beemelmanns, C. (2023) Adaptations of Pseudoxylaria towards a comb-associated lifestyle in fungus-farming termite colonies. The ISME Journal 17: 733–747. https://doi.org/10.1038/s41396-023-01374-4
- Gilgado, F., Gene, J., Cano, J. & Guarro, J. (2007) Reclassification of Graphium tectonae as Parascedosporium tectonae gen. nov., comb. nov., Pseudallescheria africana as Petriellopsis africana gen. nov., comb. nov. and Pseudallescheria fimeti as Lophotrichus fimeti comb. nov. International Journal of Systematic and Evolutionary Microbiology 57: 2171–2178. https://doi.org/10.1099/ijs.0.64958-0
- Glez-Peña, D., Gómez-Blanco, D., Reboiro-Jato, M., Fdez-Riverola, F. & Posada, D. (2010) FALTER: Program oriented conversion of DNA and protein alignments. Nucleic Acids Research 38: 14–18. https://doi.org/10.1093/nar/gkq321
- Govorushko, S. (2019) Economic and ecological importance of termites: A global review. Entomological Science 22: 21–35. https://doi.org/10.1111/ens.12328
- Guedegbe, H.J., Miambi, E., Pando, A., Roman, J., Houngnandan, P. & Rouland-Lefevre, C. (2009) Occurrence of fungi in combs of fungus-growing termites (Isoptera: Termitidae, Macrotermitinae). Mycological Research 113: 1039–1045. https://doi.org/10.1016/j.mycres.2009.06.008
- Guswenrivo, I., Nagao, H. & Lee, C.Y. (2018) The diversity of soil fungus in and around termite mounds of Globitermes sulphureus (Haviland) (Blattodea: Termitidae) and response of subterranean termite to fungi. In: Sustainable Future for Human Security. Springer: Berlin/Heidelberg, Germany, pp. 37–52. https://doi.org/10.1007/978-981-10-5430-3_4
- Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. https://doi.org/10.1021/bk-1999-0734.ch008
- Hemme, D., Bouillanne, C., Metro, F. & Desmazeaud, M.J. (1982) Microbial catabolism of amino acids during cheese ripening. Sciences des Aliments 2: 113–123.
- Heshmatnia, J., Marjani, M., Mahdaviani, S.A., Adimi, P., Pourabdollah, M. Tabarsi, P., Mahdavi, F., Jamaati, H., Adcock, I.M., Garssen, J., Velayati, A., Mansouri, D. & Mortaz, E. (2017) Paecilomyces formosus infection in an adult patient with undiagnosed chronic granulomatous disease. Journal of Clinical Immunology 37: 342–346. https://doi.org/10.1007/s10875-017-0395-5
- Huang, S.K., Hyde, K.D., Mapook, A., Maharachchikumbura, S.S.N., Bhat, J.D., McKenzie, E.H.C., Jeewon, R. & Wen, T.C. (2021) Taxonomic studies of some often over-looked Diaporthomycetidae and Sordariomycetidae. Fungal Diversity 111: 443–572. https://doi.org/10.1007/s13225-021-00488-4
- Junqueira, L.K. & Florencio, D.F. (2018) Termite Damage in Agriculture Areas and Implanted Forests: An Ecological Approach. In: Khan, M.A. & Ahmad, W. (Eds.) Termites and Sustainable Management. Springer International Publishing: Cham, Switzerland, pp. 38–50. https://doi.org/10.1007/978-3-319-68726-1_2
- Kamilari, E., Stanton, C., Reen, F.J. & Ross, R.P. (2023) Uncovering the biotechnological importance of Geotrichum candidum. Foods 12: 1124. https://doi.org/10.3390/foods12061124
- Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
- Lu, Q., Gerrits van den Ende, A.H.G., Bakkers, J.M.J.E., Sun, J., Lackner, M., Najafzadeh, M.J., Melchers, W.J.G., Li, R. & de Hoog, G.S. (2011) Identification of Pseudallescheria and Scedosporium species by three molecular methods. Journal of Clinical Microbiology 49: 960–967. https://doi.org/10.1128/JCM.01813-10
- Mathew, G.M., Ju, Y.M., Lai, C.Y., Mathew, D.C. & Huang, C.C. (2012) Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualists. FEMS Microbiology Ecology 79: 504–517. https://doi.org/10.1111/j.1574-6941.2011.01232.x
- Mendes-Pereira, T., Moreira, C.C., Kloss, T.G, Fonseca, P.L.C., Elliot, S.L. & de Loreto, R.G. (2022) Fungus-insect symbiosis: Diversity and negative ecological role of the hypocrealean fungus Trichoderma harzianum in colonies of neotropical termites (Blattodea: Termitidae). Fungal Ecology 57: 101152. https://doi.org/10.1016/j.funeco.2022.101152
- Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the 2010 Gateway Computing Environments Workshop (GCE). New Orleans, LA, USA, 14 November, pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129
- Moriya, S., Inoue, T., Ohkuma, M., Yaovapa, T., Johjima, T., Suwanarit, P., Sangwanit, U., Vongkaluang, C., Noparatnaraporn, N. & Kudo, T. (2005) Fungal community analysis of fungus gardens in termite nests. Microbes and Environments 20: 243–252. https://doi.org/10.1264/jsme2.20.243
- Mutsamba, E.F., Nyagumbo, I. & Mafongoy, P. (2016) Termite prevalence and crop lodging under conservation agriculture in sub-humid Zimbabwe. Crop Protection 82: 60–64. https://doi.org/10.1016/j.cropro.2016.01.004
- Nagahama, T., Abdel-Wahab, M.A., Nogi, Y., Miyazaki, M., Uematsu, K., Hamamoto,M. & Horikoshi, K. (2008) Dipodascus tetrasporeus sp. nov., an ascosporogenous yeast isolated from deep-sea sediments in the Japan trench. International Journal of Systematic and Evolutionary Microbiology 58: 1040–1046. https://doi.org/10.1099/ijs.0.65471-0
- Nagam, V., Aluru, R., Shoaib, M., Dong, G.R., Li, Z., Pallaval, V.B. & Ni, J.F. (2021) Diversity of fungal isolates from fungus‐growing termite Macrotermes barneyi and characterization of bioactive compound from Xylaria escharoidea. Insect Science 28: 392–402. https://doi.org/10.1111/1744-7917.12799
- Nobre, T. & Aanen, D.K. (2012) Fungiculture or termite husbandry? the Ruminant Hypothesis. Insects 3: 307–323. https://doi.org/10.3390/insects3010307
- Nylander, J.A., Wilgenbusch, J.C., Warren, D.L. & Swofford, D.L. (2008) AWTY (Are we there yet?): A system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581–583. https://doi.org/10.1093/bioinformatics/btm388.
- Olmo, D., Armengol, J., León, M. & Gramaje, D. (2015) Pathogenicity testing of lesser-known fungal trunk pathogens associated with wood decay of almond trees. European Journal of Plant Pathology 143: 607–611. https://doi.org/10.1007/s10658-015-0699-3
- Otani, S., Challinor, V.L., Kreuzenbeck, N.B., Kildgaard, S., Krath Christensen, S., Larsen, L.L.M., Aanen, D.K., Rasmussen, S.A., Beemelmanns, C. & Poulsen, M. (2019) Disease-free monoculture farming by fungus-growing termites. Scientific Reports 9: 8819. https://doi.org/10.1038/s41598-019-45364-z
- Ozben, S., Demirci, F., Değirmenci, K. & Uzunok, S. (2017) First report of Pleurostoma richardsiae associated with grapevine decline diseases of grapevine in Turkey. Journal of Plant Pathology 99: 804.
- Pintos Varela, C., Redondo Fernandez, V., Aguin Casal, O., Ferreiroa Martinez, V. & Mansilla Vazquez, J.P. (2016) First report of Pleurostoma richardsiae causing grapevine trunk disease in Spain. Plant Disease 100: 2168–2168. https://doi.org/10.1094/PDIS-04-16-0444-PDN
- Ram, C. (1968) Timber-attacking fungi from the State of Maranhao, Brazil. Some new species of Paecilomyces and its perfect stage Byssochlamys Westl. VIII. Nova Hedwigia 16: 305–314.
- Rolshausen, P.E., Úrbez-Torres, J.R., Rooney-Latham, S., Eskalen, A., Smith, R.J. & Gubler, W.D. (2010) Evaluation of pruning wound susceptibility and protection against fungi associated with grapevine trunk diseases. American Journal of Enology and Viticulture 61: 113–119. https://doi.org/10.5344/ajev.2010.61.1.113
- Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61 (3): 539–542. https://doi.org/10.1093/sysbio/sys029.
- Samson, R.A., Houbraken, J., Varga, J. & Frisvad, J.C. (2009) Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs. Persoonia 22: 14–27. https://doi.org/10.3767/003158509X418925
- Shoaib, M., Bai, R., Li, S., Xie, Y., Shen, Y. & Ni, J. (2024) Exploring the diversity of microbes and natural products from fungus-growing termite tripartite symbiosis. Engineering Microbiology 4: 100124. https://doi.org/10.1016/j.engmic.2023.100124
- Sibanda, A., Ruzvidzo, O., Ncube, I. & Ncube, T. (2019) Diversity of cellulase-and xylanase-producing filamentous fungi from termite mounds. Journal of Yeast and Fungal Research 10: 15–29. https://doi.org/10.5897/JYFR2019.0189
- Spetik, M., Berraf-Tebbal, A., Gramaje, D., Mahamedi, A.E., Stuskova, K., Burgova, J. & Eichmeier, A. (2022) Paecilomyces clematidis (Eurotiales, Thermoascaceae): a new species from Clematis root. Phytotaxa 559: 238–246. https://doi.org/10.11646/phytotaxa.559.3.2
- Stamatakis, A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
- Sulo, P., Laurencik, M., Polakova, S., Minarik, G. & Slavikova, E. (2009) Geotrichum bryndzae sp. nov., a novel asexual arthroconidial yeast species related to the genus Galactomyces. International Journal of Systematic and Evolutionary Microbiology 59: 2370–2374. https://doi.org/10.1099/ijs.0.008938-0
- Tang, S.M., Vadthanarat, S., He, J., Raghoonundon, B., Yu, F.M., Karunarathna, S.C., Li, S.H. & Raspé, O. (2023) Morphological and molecular analyses reveal two new species of Termitomyces (Agaricales, Lyophyllaceae) and morphological variability of T. intermedius. MycoKeys 95: 61. https://doi.org/10.3897/mycokeys.95.97156
- Torabi, A., Bonjar, G.H.S., Abdolshahi, R., Pournamdari, M. & Saadoun, I. (2019) Biological control of Paecilomyces formosus, the causal agent of dieback and canker diseases of pistachio by two strains of Streptomyces misionensis. Biological Control 137: 104029. https://doi.org/10.1016/j.biocontrol.2019.104029
- Ueda, S., Kawara, N., Yaguchi, T. & Udagawa, S.I. (2010) Identification and heat-resistance characteristics of Byssochlamys lagunculariae, a mold isolated from citrus raw material of spoiled fruit jelly products. Nippon Kingakukai Kaiho 51: 48–58. [in Japanese]
- Urquhart, A.S. & Idnurm, A. (2023) A polyphasic approach including whole genome sequencing reveals Paecilomyces paravariotii sp. nov. as a cryptic sister species to P. variotii. Journal of Fungi 9: 285. https://doi.org/10.3390/jof9030285
- Van Huis, A. (2017) Cultural significance of termites in sub-Saharan Africa. Journal of Ethnobiology and Ethnomedicine 13: 1–12. https://doi.org/10.1186/s13002-017-0137-z
- Van Thuyne, J. & Verrecchia, E.P. (2021) Impacts of fungus-growing termites on surficial geology parameters: A review. Earth-Science Reviews 223: 103862. https://doi.org/10.1016/j.earscirev.2021.103862
- Větrovský, T., Soukup, P., Stiblik, P., Votýpková, K., Chakraborty, A., Larrañaga, I.O., Sillam-Dussès, D., Lo, N., Bourguignon, T., Baldrian, P., Šobotník, J. & Kolařík, M. (2020) Termites host specific fungal communities that differ from those in their ambient environments. Fungal Ecology 48: 100991. https://doi.org/10.1016/j.funeco.2020.100991
- Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
- Visser, A.A., Nobre, T., Currie, C.R., Aanen, D.K. & Poulsen, M. (2012) Exploring the potential for Actinobacteria as defensive symbionts in fungus-growing termites. Microbial Ecology 63: 975–985. https://doi.org/10.1007/s00248-011-9987-4
- Wen, C., Xiong, H., Wen, J., Wen, X. & Wang, C. (2020) Trichoderma species attract Coptotermes formosanus and antagonize termite pathogen Metarhizium anisopliae. Frontiers in Microbiology 11: 653. https://doi.org/10.3389/fmicb.2020.00653
- White, T.J., Bruns, T., Lee, S.J.W.T. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., (Eds.) PCR Protocols: A Guide to Methods and Applications. Academic Press: San Diego, CA, USA, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Wood, T.G. (1996) The agricultural importance of termites in the tropics. Agricultural Zoology Reviews 7: 117–155.
- Xing, L.X., Yin, L.F., Kong, X.H., Liu, M.H., Wang, K. & Su, X.H. (2014) Observations of grooming and trophallaxis in a Chinese subterranean termite, Reticulitermes aculabialis Tsai et Hwang (Isoptera: Rhinotermitidae). Chinese Journal of Ecology 33: 149. [in Chinese]
- Xiong, H., Cai, J., Chen, X., Liang, S., Wen, X. & Wang, C. (2019) The effects of Trichoderma fungi on the tunneling, aggregation, and colony-initiation preferences of black-winged subterranean termites, Odontotermes formosanus (Blattodea: Termitidae). Forests 10: 1020. https://doi.org/10.3390/f10111020
- Yadav, P., Dixit, Y., Asnani, H. & Sharma, A.K. (2024) Exploration of ethanologenic bacteria from termite gut for bioethanol production. Biomass Conversion and Biorefinery 2024: 1–14. https://doi.org/10.1007/s13399-024-05935-1
- Yang, E.F., Karunarathna, S.C., Dai, D.Q., Stephenson, S.L., Elgorban, A.M., Al-Rejaie,S., Xiong, Y.R., Itthayakorn, P., Samarakoon, M.C. & Tibpromma, S. (2022) Taxonomy and phylogeny of fungi associated with Mangifera indica from Yunnan, China. Journal of Fungi 8: 1249. https://doi.org/10.3390/jof8121249
- Zhang, W., Groenewald, J.Z., Lombard, L., Schumacher, R.K. & Phillips, A.J.L. (2021) Evaluating species in Botryosphaeriales. Persoonia 46: 63–115. https://doi.org/10.3767/persoonia.2021.46.03
- Zhaxybayeva, O. & Gogarten, J.P. (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: Exploring new tools for comparative genome analysis. BMC Genomics 3: 1–15. https://doi.org/10.1186/1471-2164-3-4
- Zhu, H.Y., Shang, Y.J., Wei, X.Y., Groenewald, M., Robert, V., Zhang,R.P., Li, A.H., Han, P.J., Ji, F., Li, J.N., Liu, X.Z. & Bai, F.Y. (2024) Taxonomic revision of Geotrichum and Magnusiomyces, with the descriptions of five new Geotrichum species from China. Mycology 15 (3): 400–423. https://doi.org/10.1080/21501203.2023.2294945