Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-17
Page range: 25-35
Abstract views: 171
PDF downloaded: 7

A new species of Craterium (Myxomycetes, Physarales, Physaraceae) with a mottled peridium

Lomonosov Moscow State University, Leninskiye gory, 1‐12, Moscow, 119991, Russia
V.L. Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Prof. Popov St. 2, 197376, Russia
V.L. Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Prof. Popov St. 2, 197376, Russia
Amoebozoa Russia morphology molecular phylogeny slime moulds taxonomy temperate forest Fungi

Abstract

A new species of Craterium, described herein as С. guttatum, was recovered in Russia, during intensive field work in the Kaluzhskiye Zaseki Nature Reserve (Kaluga Oblast’) and in the Sudogodskiy District of the Vladimir Oblast’. Morphological details of sporocarps and spores were examined by light and scanning electron microscopy. The new species is characterized by a unique combination of morphological characters, such as a beaker-shaped sporotheca with a mottled peridium and a prominent line of dehiscence separating the upper part of the sporotheca in the form of a convex white lid, as well as spores densely ornamented with small warts grouped in clusters. The partial sequences of the 18S rRNA, EF1α and mtSSU genes of C. guttatum differ significantly from all Craterium species sequences available to date.

References

  1. Baldauf, S.L. & Doolittle, W.F. (1997) Origin and evolution of the slime molds (Mycetozoa). Proceedings of the National Academy of Sciences 94 (22): 12007–12012. https://doi.org/10.1073/pnas.94.22.12007
  2. Borg Dahl, M., Brejnrod, A.D., Unterseher, M., Hoppe, T., Feng, Y., Novozhilov, Y.K., Sørensen, S.J. & Schnittler, M. (2017) Genetic barcoding of dark-spored myxomycetes (Amoebozoa) – identification, evaluation and application of a sequence similarity threshold for species differentiation in NGS studies. Molecular Ecology Resources 18 (2): 306–318. https://doi.org/10.1111/1755-0998.12725
  3. Castillo, A., Moreno, G., Illana, C. & Singer, H. (2002) Notes on two violet species belonging to Physarales (Myxomycetes). Mycotaxon 83: 347–356.
  4. Centore, P. (2016) Centroids for the ISCC-NBS colour system 2 Colour Specifications. Munsell Colour Science for Painters, London, 21 pp.
  5. Fiore-Donno, A.M., Meyer, M., Baldauf, S.L. & Pawlowski, J. (2008) Evolution of dark-spored Myxomycetes (slime-molds): molecules versus morphology. Molecular Phylogenetics and Evolution 46 (3): 878–889. https://doi.org/10.1016/j.ympev.2007.12.011
  6. García-Martín, J.M., Zamora, J.C. & Lado, C. (2023) Multigene phylogeny of the order Physarales (Myxomycetes, Amoebozoa): shedding light on the dark-spored clade. Persoonia 51: 89–124. https://doi.org/10.3767/persoonia.2023.51.02.
  7. Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35 (2): 518–522. https://doi.org/10.1093/molbev/msx281
  8. Hoff, J.P.M. & Nannenga-Bremekamp, N.E. (1996) Additions to the Myxomycetes of the Netherlands. Proceedings. Koninklijke Nederlandse Akademie van Wetenschappen. Ser.C, Biological and medical sciences 99 (1–2): 45–53.
  9. Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17 (8): 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
  10. Ing, B. (1999) The myxomycetes of Britain and Ireland. Richmond Publishing Company, London, 374 pp.
  11. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285
  12. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010
  13. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20 (4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  14. Lado, C., Treviño-Zevallos, I., García-Martín, J.M. & Wrigley de Basanta, D. (2022) Diachea mitchellii: a new myxomycete species from high elevation forests in the tropical Andes of Peru. Mycologia 114 (4): 798–811. https://doi.org/10.1080/00275514.2022.2072140
  15. Leontyev, D.V., Schnittler, M., Stephenson, S.L., Novozhilov, Y.K. & Shchepin, O.N. (2019) Towards a phylogenetic classification of the Myxomycetes. Phytotaxa 399 (3): 209–238. https://doi.org/10.11646/phytotaxa.399.3.5
  16. Li, H.Z., Li, Y. & Chen, S.L. (1993) Myxomycetes from China XI: a new species of Craterium. Mycosystema 6: 113–115.
  17. Lister, A. (1925) A monograph of the Mycetozoa being a descriptive catalogue of the species in the Herbarium of the British Museum. [revised by G. Lister]. British Museum (Natural History), London, 298 pp.
  18. Liu, Q.S., Yan, S.Z. & Chen, S.L. (2015) Further resolving the phylogeny of Myxogastria (slime molds) based on COI and SSU rRNA genes. Genetika 51: 46–53. https://doi.org/10.7868/s0016675814110071
  19. Martin, G.W. & Alexopoulos, C.J. (1969) The Myxomycetes. Iowa University press, Iowa City, 561 pp.
  20. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE). IEEE, New Orleans. pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129
  21. Moreno, G., Mitchell, D.W., Stephenson, S.L. & Delacruz, T.E. (2009) A new species of Craterium (Myxomycetes) with reticulate spores. Boletín de la Sociedad Micológica de Madrid 33: 177–181.
  22. Nannenga-Bremekamp, N.E. & Yamamoto, Y. (1987) Additions to the Myxomycetes of Japan III. Proceedings. Koninklijke Nederlandse Akademie van Wetenschappen. Ser.C, Biological and medical sciences 90 (3): 311–349.
  23. Nannenga-Bremekamp, N.E. (2022) Descriptive, illustrated keys to the world`s myxomycetes. A posthumous publication with foreword, annotations, updates and editing by C. Lado. Consejo superior de investigaciones científicas, Madrid, 582 pp.
  24. Neubert, H., Nowotny, W., Baumann, K. & von Heidi Marx, M. (1995) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs. Band 2. Physarales. Karlheinz Baumann Verlag, Gomaringen, 368 pp.
  25. Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32 (1): 268–274. https://doi.org/10.1093/molbev/msu300
  26. Novozhilov, Y.K., Okun, M.V., Erastova, D.A., Shchepin, O.N. & Zemlyanskaya, I.V. (2013) Description, culture and phylogenetic position of a new xerotolerant species of Physarum. Mycologia 105 (6): 1535–1546. https://doi.org/10.3852/12-284
  27. Novozhilov, Y.K., Prikhodko, I.S. & Shchepin, O.N. (2019) A new species of Diderma from Bidoup Nui Ba National Park (southern Vietnam). Protistology 13 (3): 126–132. https://doi.org/10.21685/1680-0826-2019-13-3-2
  28. Novozhilov, Y., Prikhodko, I., Bortnikov, F., Shchepin, O., Luptakova, A., Dobriakova, K. & Pham, T. (2023) Diachea racemosa (Myxomycetes = Myxogastrea): a new species with cespitose sporocarps from southern Vietnam and its position within the phylogenetic clade Diachea sensu lato (Physarales). Protistology 17 (4): 189–204. https://doi.org/10.21685/1680-0826-2023-17-4-1
  29. Okonechnikov, K., Golosova, O. Fursov, M. & the UGENE team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28 (8): 1166–1167. https://doi.org/10.1093/bioinformatics/bts091
  30. Poulain, M., Meyer, M. & Bozonnet, J. (2011) Les Myxomycétes. Tome 2. Fédération mycologique et botanique, Sévrier, 544 pp.
  31. Prikhodko, I.S., Shchepin, O.N., Bortnikova, N.A., Novozhilov, Y.K. Gmoshinskiy, V.I., Moreno, G., López-Villalba, Á., Stephenson, S.L. & Schnittler, M. (2023a) A three-gene phylogeny supports taxonomic rearrangements in the family Didymiaceae (Myxomycetes). Mycological Progress 22 (2): 11. https://doi.org/10.1007/s11557-022-01858-1
  32. Prikhodko, I.S., Shchepin, O.N., Novozhilov, Y.K., Gmoshinskiy, V.I. & Schnittler, M. (2023b) Reassessing the phylogenetic position of the genus Kelleromyxa (Myxomycetes = Myxogastrea) using genome skimming data. Protistology 17 (2): 73–84. https://doi.org/10.21685/1680-0826-2023-17-2-2
  33. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67 (5): 901–904. https://doi.org/10.1093/sysbio/syy032
  34. Rammeloo, J. (1975) Structure of the Epispore in the Stemonitales (Myxomycetes) as Seen with the Scanning Electron Microscope. Bulletin du Jardin Botanique National de Belgique 45 (3–4): 301–306.
  35. Roth, A.W. (1797) Catalecta botanica quibus plantae novae et minus cognitae describuntur atque illustrantur. I.G. Mülleriano, Lipsiae. 246 pp.
  36. Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27 (2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  37. Wrigley de Basanta, D. & Estrada-Torres, A. (2022) Techniques for recording and isolating myxomycetes: updated. In: Rojas, C. & Stephenson, S.L. (Eds.) Myxomycetes: Biology, Systematics, Biogeography and ecology. Academic Press, Oxford, pp. 417–451. https://doi.org/10.1016/B978-0-12-824281-0.00015-4
  38. Zhang, B., Ma, H., Li, Z., Li, Y. & Li, H. (2020) A new species of Craterium (Myxomycetes, Physaraceae) growing on living grass and new records of the genus from China. Phytotaxa 443 (1): 13–18. https://doi.org/10.11646/phytotaxa.443.1.2