Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-04-26
Page range: 192-213
Abstract views: 638
PDF downloaded: 9

Morphological and molecular insights into the hidden edible mushroom diversity in Sri Lanka

Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka, Center for Biotechnology, Department of Zoology, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka, Center for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China, National Institute of Fundamental Studies, Hantane Road, Kandy, Sri Lanka
B-Hood Myco-Tropic Innovations, 1/9, 1st Lane, Issadeen Town, Matara, Sri Lanka
Center for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka, Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
Center for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka, Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
Basidiomycetes DNA barcoding Internal Transcribed Spacer (ITS) Molecular phylogeny New Records Taxonomy Fungi

Abstract

With the increasing world population, identifying additional food sources is crucial. Mushrooms have long been considered a nutraceutical and are consumed globally, including in Sri Lanka. Due to its abundant biodiversity, there is a significant potential for diverse wild edible mushrooms in Sri Lanka. However, the identification of these mushrooms based on morphological characteristics can often be misleading. Molecular characterization ensures more accurate and reliable identification of mushrooms, yet it has not been conducted extensively in Sri Lanka. This study collected several wild edible mushroom samples from Colombo and Rathnapura Districts of Sri Lanka. The edibility of these wild edible mushrooms was confirmed based on traditional knowledge and later verified by published literature. Phylogenetic analyses based on maximum likelihood (ML) analyses of ITS rDNA sequence data and morphological characteristics were used to determine the identity of the collected mushrooms. In this study, six edible mushrooms, Calvatia candida, Pleurotus giganteus, Schizophyllum radiatum, Termitomyces heimii, T. microcarpus, and Volvariella volvacea were identified based on morphology and phylogeny. Calvatia candida and S. radiatum are reported as new records for Sri Lanka, while this is the first study conducted on molecular characterization of V. volvacea in Sri Lanka. Finally, this study aims to increase the research interest, cultivation, commercialization, and conservation of these identified edible mushrooms in Sri Lanka.

References

  1. Anusiya, G., Gowthama, P.U., Yamini, N.V., Sivarajasekar, N., Rambabu, K., Bharath, G. & Banat, F. (2021) A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered 12 (2): 11239–11268. https://doi.org/10.1080/21655979.2021.2001183
  2. Ao, T., Deb, C.R. & Rao, S.R. (2019) Molecular strategies for identification and characterization of some wild edible mushrooms of Nagaland, India. Molecular Biology Reports 47 (1): 621–630. https://doi.org/10.1007/s11033-019-05170-2
  3. Ariyawansa, H.A., Hawksworth, D.L., Hyde, K.D., Jones, E.B.G., Sajeewa, S.N. Maharachchikumbura, Manamgoda, D.S., Thambugala, K.M., Udayanga, D., Camporesi, E., Daranagama, A., Jayawardena, R.S., Liu, J., McKenzie, E.H.C., Phookamsak, R., Senanayake, I.C., Shivas, R.G., Tian, Q. & Xu, J. (2014) Epitypification and neotypification: guidelines with appropriate and inappropriate examples. Fungal Diversity 69 (1): 57–91. https://doi.org/10.1007/s13225-014-0315-4
  4. Begerow, D., Nilsson, H., Unterseher, M. & Maier, W. (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology 87: 99–108.https://doi.org/10.1007/s00253-010-2585-4
  5. Berkeley, M. J. (1847) Decades of fungi. Dec. XV–XIX. Ceylon fungi. London Journal of Botany 6: 479–514.
  6. Berkeley, M.J. & Broome, C.E. (1871) The fungi of Ceylon. (Hymenomycetes, from Agaricus to Cantharellus). Journal of the Linnean Society, Botany 11: 537.https://doi.org/10.1111/j.1095-8339.1871.tb00163.x
  7. Bulliard, J.B.F. (1786) Herbier de la France, 6. Paris, pl. 262.
  8. Carreño-Ruiz, S.D., Lázaro, A.A.Á., García, S.C., Hernández, R.G., Chen, J., Navarro, G.K.G., Fajardo, L.V.G., Pérez, N.D.C.J., Cruz, M.T.D.L., Blanco, J.C. & Cappello, R.E. (2019) New record of Schizophyllum (Schizophyllaceae) from Mexico and the confirmation of its edibility in the humid tropics. Phytotaxa 413 (2): 137–148. https://doi.org/10.11646/phytotaxa.413.2.3
  9. Chang, S. & Miles, P. (1992) Mushroom biology—A new discipline. Topics in Catalysis 6 (2): 64–65. https://doi.org/10.1016/S0269-915X(09)80449-7
  10. Chattopadhyay, P., Talukdar, M., Jeswani, B., Kumananda, T. & Dutta, A.K. (2022) A new species of Volvariella (Agaricales, Basidiomycota) from West Bengal, India. Phytotaxa 567 (1): 36–48. https://doi.org/10.11646/phytotaxa.567.1.3
  11. Coomaraswamy, U. (1979) A Handbook to the Agarics of Sri Lanka. MAB-UNESCO Publication No. 5. National Science Council. Sri Lanka, 61 pp.
  12. Ediriweera, N.A., Pietro, V., Karunarathna, S.C. & Dilshan, C. (2023) Termitomyces srilankensis sp. nov. (Lyophyllaceae, Agaricales), a new species from Sri Lanka. MycolObs—Mycological Observations 6: 47–53.
  13. Fries, E.M. (1851) Novae symbolae mycologicae, in peregrinis terris a botanicis danicis collectae. Nova Acta Regiae Societatis Scientiarum Upsaliensis Series 3 1 (1): 41. https://doi.org/10.5962/bhl.title.112967
  14. Gamage, S. & Ohga, S. (2018) A Comparative Study of Technological Impact on Mushroom Industry in Sri Lanka: A Review. Advances in Microbiology 8 (8): 665–686. https://doi.org/10.4236/aim.2018.88045
  15. Galappaththi, M.C. & Karunarathna, S.C. (2023) The Current Status of Sri Lankan Mushroom Research. In: Semwal, K.C., Stephenson, S.L. & Husen, A. (Eds.) Wild Mushrooms and Health. CRC Press, pp. 240–249. https://doi.org/10.1201/b23190-13
  16. Galappaththi, M.C.A., Lu, Y., Karunarathna, S.C., Wijewardena, N., Karunarathna, A., Gamage, M. & Ediriweera, A.N. (2022) First successful cultivation and nutritional composition of Macrocybe gigantea in Sri Lanka. MycoAsia-Journal of modern mycology: 7. https://doi.org/10.59265/mycoasia.2022-07
  17. Gezer, K. & Kaygusuz, O. (2015) Soil and habitat characteristics of various species of mushroom growing wild in the Gireniz Valley, Turkey. Oxidation Communications 38 (1): 389–397.
  18. Gunasekaran, S., Chinnarajan, R. & Parasnis, A. (2018) Notes on Indian species of Calvatia and Langermannia including Calvatia natarajanii sp. nov. Phytotaxa 362 (2): 160–172. https://doi.org/10.11646/phytotaxa.362.2.3
  19. Gunasekara, N.W., Nanayakkara, C.M., Karunarathna, S.C. & Wijesundera, R.L.C. (2021) Nutritional aspects of three Termitomyces and four other wild edible mushroom species from Sri Lanka. Chiang Mai Journal of Science 48 (5): 1236–1246.
  20. Haqnawaz, M., Khan, Z., Niazi, A.R. & Khalid, A.N. (2023) Volvariella variicystidiosa sp. nov. (Agaricaceae, Basidiomycota) from Punjab, Pakistan. Phytotaxa 578 (2): 189–198. https://doi.org/10.11646/phytotaxa.578.2.5
  21. Heim, R. (1941) Comptes Rendus—Académie des sciences 213: 147.
  22. Hewage, D. (2015) Traditional Knowledge of Edible Wild Mushrooms in a Village Adjacent to the Sinharaja Forest. Journal of the Royal Asiatic Society of Sri Lanka-New series 60 (1): 77–95.
  23. Hollós, L. (1902) Természetrajzi Füzetek. Budapest, 112 pp.
  24. Horn, I.R., Verleg, P.A., Ibrahim, N.Z., Soeleman, K., Kampen, F., Ruesen, M.O., Reulen, N.M., Breij, H., Bakker, R.J. & Gravendeel, B. (2020) Mushroom DNA barcoding project: Sequencing a segment of the 28S rRNA gene. Biochemistry and Molecular Biology Education 48 (4): 404–410. https://doi.org/10.1002/bmb.21388
  25. Hsieh, H.-M. & Ju, Y.-M. (2018) Medicinal components in Termitomyces mushrooms. Applied Microbiology and Biotechnology 102 (12): 4987–4994. https://doi.org/10.1007/s00253-018-8991-8
  26. Hu, Y., Karunarathna, S.C., Li, H., Galappaththi, M.C., Zhao, C.L., Kakumyan, P. & Mortimer, P.E. (2022) The Impact of Drying Temperature on Basidiospore Size. Diversity 14 (4): 239. https://doi.org/10.3390/d14040239
  27. Hyde, K.D. & Zhang, Y. (2008) Epitypification: should we epitypify? Journal of Zhejiang University-SCIENCE B 9 (10): 842–846. https://doi.org/10.1631/jzus.b0860004
  28. Johannes, C.C. & Abraham, E. van W. (2009) The genus Calvatia (Gasteromycetes, Lycoperdaceae): A review of its ethnomycology and biotechnological potential. African Journal of Biotechnology 8 (22): 6007–6015. https://doi.org/10.5897/AJB09.360
  29. Johnsy, G. & Kaviyarasan, V. (2014) Evaluation of Antioxidant Activities and Determination of Bioactive Compounds in Two Wild Edible Termitomycetes (T. microcarpus and T. heimii). World Journal of Dairy & Food Sciences 9: 10–19.
  30. Karunarathna, S.C., Mortimer, P.E., Xu, J. & Hyde, K.D. (2017) Overview of research of mushrooms in Sri Lanka. Revista Fitotecnia Mexicana 40 (4): 399–403. https://doi.org/10.35196/rfm.2017.4.399-403
  31. Karunarathna, S.C., Udayanga, D., Maharachchikumbura, S.N., Pilkington, M., Manamgoda, D.S., Wijayawardene, D.N.N., Ariyawansa, H.A., Bandara, A.R., Chukeatirote, E., McKenzie, E.H.C. & Hyde, K.D. (2012) Current status of knowledge of Sri Lankan mycota. Current Research in Environmental & Applied Mycology 2 (1): 18–29. https://doi.org/10.5943/cream/2/1/2
  32. Karunarathna, S.C., Yang, Z.L., Raspé, O., Ko, T.W.K., Vellinga, E.C., Zhao, R.L., Bahkali, A.H., Chukeatirote, E., Degreef, J., Callac, P. & Hyde, K.D. (2011) Lentinus giganteus revisited: New collections from Sri Lanka and Thailand. Mycotaxon 118: 57–71. https://doi.org/10.5248/118.57
  33. Kaygusuz, O., Knudsen, H., Türkekul, İ. & Çolak, Ö.F. (2020) Volvariella turcica, a new species from Turkey, and a multigene phylogeny of Volvariella. Mycologia 112 (3): 577–587. https://doi.org/10.1080/00275514.2020.1724048
  34. Khatun, S., Islam, A., Gupta, K. & Gupta, B. (2017) Detection of Edible Mushroom Species by Using Molecular Markers. In: Singh, B.P. & Gupta, V.K. (Eds.) Molecular Markers in Mycology. Fungal Biology. Springer, Cham, pp. 201–224. https://doi.org/10.1007/978-3-319-34106-4_9
  35. Konara, U.A., Thambugala, K.M. & Hapuarachchi, K.K. (2022) Ganoderma (Ganodermataceae, Polyporales): Historical perspectives, recent advances, and future research in Sri Lanka. Studies in Fungi 7 (1): 1–7. https://doi.org/10.48130/SIF-2022-0017
  36. Kornerup, A. & Wanscher, J.H. (1978) Methuen Handbook of Colour. E. Methuen, 252 pp.
  37. Krakhmalnyi, M., Isikhuemhen, O.S., Jeppson, M., Wasser, S.P. & Nevo, E. (2023) Species Diversity of Lycoperdaceae (Agaricales) in Israel, with Some Insights into the Phylogenetic Structure of the Family. Journal of Fungi 9 (10): 1038. https://doi.org/10.3390/jof9101038
  38. Kshirsagar, Y. (2020) Morphological, ultrastructural and phylogenetic study of Calvatia candida and Calvatia craniiformis reported from Northern western Ghat of India. Current Research in Environmental & Applied Mycology 10 (1): 103–112. https://doi.org/10.5943/cream/10/1/11
  39. Kumla, J., Suwannarach, N., Wannathes, N. & Lumyong, S. (2022) Survey of Volvariella (Agaricales, Basidiomycota) including Two New Species, V. neovolvacea and V. thailandensis, from Northern Thailand. Diversity 14 (3): 161. https://doi.org/10.3390/d14030161
  40. Li, H., Tian, Y., Menolli Jr., N., Ye, L., Karunarathna, S.C., Perez‐Moreno, J., Rahman, M.M., Rashid, M.H., Phengsintham, P., Rizal, L. & Kasuya, T. (2021) Reviewing the world’s edible mushroom species: A new evidence‐based classification system. Comprehensive Reviews in Food Science and Food Safety 20 (2): 1982–2014. https://doi.org/10.1111/1541-4337.12708
  41. López-Legarda, X., Rostro-Alanis, M., Parra-Saldivar, R., Villa-Pulgarín, J.A. & Segura-Sánchez, F. (2021) Submerged cultivation, characterization and in vitro antitumor activity of polysaccharides from Schizophyllum radiatum. International Journal of Biological Macromolecules 186: 919–932. https://doi.org/10.1016/j.ijbiomac.2021.07.084
  42. Maduranga, K., Attanayake, R.N., Santhirasegaram, S., Weerakoon, G. & Paranagama, P.A. (2018) Molecular phylogeny and bioprospecting of Endolichenic Fungi (ELF) inhabiting in the lichens collected from a mangrove ecosystem in Sri Lanka. Plos One 13 (8): e0200711. https://doi.org/10.1371/journal.pone.0200711
  43. Metuku, R.P., Pabba, S., Burra, S., Hima Bindu, A.V.S.S.S.L., Gudikandula, K. & Charya, M.A.S. (2014) Biosynthesis of silver nanoparticles from Schizophyllum radiatum HE 863742.1: their characterization and antimicrobial activity. 3 Biotech 4: 227–234. https://doi.org/10.1007/s13205-013-0138-0
  44. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129.
  45. Miriyagalla, S.D., Manamgoda, D.S. & Udayanga, D. (2022) Molecular characterization and cultivation of edible wild mushrooms, Lentinus sajor-caju, L. squarrosulus and Pleurotus tuber-regium from Sri Lanka. Current Research in Environmental and Applied Mycology 12: 28–43. https://doi.org/10.5943/cream/12/1/3.
  46. Natarajan, K. (1979) South Indian Agaricales V: Termitomyces heimii. Mycologia 71: 853. https://doi.org/10.2307/3759201
  47. Nissanka, A.S., Rajapaksha, P. & Rathnayake, R.H.M.K. (2013) Development of new cultivation technology for straw mushroom (Volvariella volvacea) using locally available raw meterials. Proceedings of International Forestry and Environment Symposium, Sri Lanka. https://doi.org/10.31357/fesympo.v0i0.1735
  48. Paloi, S., Kumla, J., Paloi, B.P., Srinuanpan, S., Hoijang, S., Karunarathna, S.C., Acharya, K., Suwannarach, N. & Lumyong, S. (2023) Termite Mushrooms (Termitomyces), a Potential Source of Nutrients and Bioactive Compounds Exhibiting Human Health Benefits. Journal of Fungi 9 (1): 112. https://doi.org/10.3390/jof9010112
  49. Park, Y.-J., Kwon, O-Chul., Son, E.-S., Yoon, D.-E., Han, W., Yoo, Y.-B. & Lee, C.-S. (2012) Taxonomy of Ganoderma lucidum from Korea Based on rDNA and Partial β-Tubulin Gene Sequence Analysis. Mycobiology 40 (1): 71–75. https://doi.org/10.5941/MYCO.2012.40.1.071
  50. Pegler, D.N. (1986) Agaric flora in Sri Lanka. Kew Royal Botanical Gardens. London, 519 pp.
  51. Phan, C.W., Wang, J.K., Tan, E.Y.Y., Tan, Y.S., Sathiya Seelan, J.S., Cheah, S.C. & Vikineswary, S. (2019) Giant oyster mushroom, Pleurotus giganteus (Agaricomycetes): Current status of the cultivation methods, chemical composition, biological, and health-promoting properties. Food Reviews International 35 (4): 324–341. https://doi.org/10.1080/87559129.2018.1542710
  52. Raja, H.A., Miller, A.N., Pearce, C.J. & Oberlies, N.H. (2017) Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. Journal of Natural Products 80 (3): 756–770. https://doi.org/10.1021/acs.jnatprod.6b01085
  53. Rajapakse, P. (2011) New cultivation technology for paddy straw mushroom (Volvariella volvacea). Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7) 1: 446–451.
  54. Ranawake, A.L. (2021) The underutilized resources in the lowland wet zone forests of Sri Lanka and untapped Indigenous knowledge of peripheral households. Journal of the university of Ruhuna 9 (2): 47–47. https://doi.org/10.4038/jur.v9i2.7997
  55. Rostkovius, F.W.T. (1839) Die Pilze Deutschlands. In: Sturm, J. (Ed.) Deutschlands Flora. Abtheilung, 25 pp.
  56. Saiqa, S., Haq, N.B., Muhammad, A.H, Muhammad, A.A & Rehman, A.U. (2008) Studies on Chemical Composition and Nutritive Evaluation of Wild Edible Mushrooms. Iranian Journal of Chemistry and Chemical Engineering 27 (3): 151–154. https://doi.org/10.30492/ijcce.2008.6981
  57. Sammut, C., Alvarado, P. & Saar, I. (2019) Schizophyllum amplum (Agaricales, Schizophyllaceae): A rare Basidiomycete from Malta and Estonia. Italian Journal of Mycology 48: 50–56. https://doi.org/10.6092/issn.2531-7342/9426
  58. Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A. & Chen, W. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, USA, pp. 6241–6246. https://doi.org/10.1073/pnas.1117018109
  59. Sharma, R., Sharma, Y.P., Hashmi, S.A.J., Kumar, S. & Manhas, R.K. (2022) Ethnomycological study of wild edible and medicinal mushrooms in district Jammu, J&K (UT), India. Journal of Ethnobiology and Ethnomedicine 18 (1): 23. https://doi.org/10.1186/s13002-022-00521-z
  60. Shashikala, M.M.P., Deraniyagala, A. & Attanayake, R.N. (2018) Diversity of decaying wood associated fungi in Dimbulagala forest of Sri Lanka. Proceedings of the 3rd International Research Symposium on Pure and Applied Sciences. University of Kelaniya, Sri Lanka.
  61. Singer, R. (1951) The Agaricales in modern taxonomy. Lilloa 22: 401.
  62. Siqueira, J.P.Z., Sutton, D., Gené, J., García, D., Guevara-Suarez, M., Decock, C., Wiederhold, N. & Guarro, J. (2016) Schizophyllum radiatum, an emerging fungus from human respiratory tract. Journal of Clinical Microbiology 54 (10): 2491–2497. https://doi.org/10.1128/JCM.01170-16
  63. Stamatakis, A. (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 (21): 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
  64. Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57 (5): 58–771. https://doi.org/10.1080/10635150802429642
  65. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28 (10): 2731–2739. https://doi.org/10.1093/molbev/msr121
  66. Thachunglura, V.L., Rai, P.K., Zohmangaiha, L.B. & Lalmuansangi, Z.J. (2023) Pleurotus giganteus as a Valuable Source of Nutrients. Indian Journal of Science and Technology 16: 89–94. https://doi.org/10.17485/IJST/v16sp1.msc12
  67. Thambugala, K.M., Karunarathna, S.C., Zhao, C.L., Elgorban, A.M., Tennakoon, D.S. & Konara, U.A. (2023) Perenniporiopsis srijayewardenepurana sp. nov. and validation of Pyrrhoderma nigrum in Sri Lanka. Phytotaxa 619 (2): 123–136. https://doi.org/10.11646/phytotaxa.619.2.1
  68. Tibuhwa, D.D. (2012) Folk taxonomy and use of mushrooms in communities around Ngorongoro and Serengeti National Park, Tanzania. Journal of Ethnobiology and Ethnomedicine 8: 36. https://doi.org/10.1186/1746-4269-8-36
  69. Tibuhwa, D.D. (2013) Wild mushroom—an underutilized healthy food resource and income generator: Experience from Tanzania rural areas. Journal of Ethnobiology and Ethnomedicine 9: 49. https://doi.org/10.1186/1746-4269-9-49
  70. Turnbull, E & Watling, R. (1999) Some Records of Termitomyces from Old World Rainforests. Kew Bulletin 54 (3): 731–738. https://doi.org/10.2307/4110869
  71. Waktola, G. & Temesgen, T. (2018) Application of Mushroom as Food and Medicine. Advances in Biotechnology & Microbiology 11 (4): 555817. https://doi.org/10.19080/AIBM.2018.11.555817
  72. Wasule, D.L., Gaharwar, A.M., Shingote, P.R. & Rathod, D.R. (2023) Paddy Straw Mushroom (Volvariella volvacea). In: Pandita, D. & Pandita, A. (Eds.) Mushrooms: Nutraceuticals and Functional Foods. CRC Press, 17 pp.https://doi.org/10.1201/9781003322238-22
  73. White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols and Applications—A Laboratory Manual: 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  74. Wu, J.S. & Zhu, F. (2016) Chemical constituents pre-analysis and antioxidant activity of the Puffball Calvatia candida from Foshan. Journal of Organic Chemistry Research 4: 69–76. https://doi.org/10.12677/JOCR.2016.43010
  75. Zhao, P., Ji, S.-P., Cheng, X.-H., Bau, T., Dong, H.-X. & Gao, X.-X. (2021) DNA Barcoding Mushroom Spawn Using EF-1α Barcodes: A Case Study in Oyster Mushrooms (Pleurotus). Frontiers in Microbiology 12: 624347. https://doi.org/10.3389/fmicb.2021.624347