Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-09-21
Page range: 27-46
Abstract views: 209
PDF downloaded: 11

Endophytic fungi associated with Coriaria nepalensis in an abandoned open-pit phosphate mine in Yunnan, P.R. China

College of Resources and Environment; Yunnan Agricultural University; Kunming; Yunnan 650201; People’s Republic of China
Center for Yunnan Plateau Biological Resources Protection and Utilization; College of Biological Resource and Food Engineering; Qujing Normal University; Qujing; Yunnan 655011; People’s Republic of China; Environmental Science Research Center: Faculty of Science; Chiang Mai University; Chiang Mai 50200; Thailand
College of Resources and Environment; Yunnan Agricultural University; Kunming; Yunnan 650201; People’s Republic of China
College of Resources and Environment; Yunnan Agricultural University; Kunming; Yunnan 650201; People’s Republic of China
Center for Yunnan Plateau Biological Resources Protection and Utilization; College of Biological Resource and Food Engineering; Qujing Normal University; Qujing; Yunnan 655011; People’s Republic of China; National Institute of Fundamental Studies (NIFS); Hantana Road; Kandy; Sri Lanka
Center for Yunnan Plateau Biological Resources Protection and Utilization; College of Biological Resource and Food Engineering; Qujing Normal University; Qujing; Yunnan 655011; People’s Republic of China
College of Resources and Environment; Yunnan Agricultural University; Kunming; Yunnan 650201; People’s Republic of China
Fungi Fungal endophytes pioneer plants phosphate mining phylogeny taxonomy

Abstract

The phosphate mining industry is prosperous in Yunnan Province, southwestern China. Among them, the Kunyang phosphate mine, situated on the southern shore of Dianchi Lake, stands as one of Asia’s largest and most ancient open-pit phosphate mines. However, mining activities and abandoned phosphate mines have resulted in significant soil erosion and water degradation, necessitating immediate ecological restoration efforts. During surveys of endophytic fungi associated with the pioneer plant Masuri berry (Coriaria nepalensis) in mining sites, Kunming, Yunnan, we report a new species, Chrysofolia kunmingensis, and three new host records of Chaetomium cochliodes, Coniella quercicola, and Epicoccum nigrum. All taxa were identified based on morphological examinations and multigene phylogenetic analyses of the internal transcribed spacers (ITS), and large subunit (nrLSU) of ribosomal DNA, beta-tubulin 2 (tub), DNA-dependent RNA polymerase II largest subunit (rpb2), and translation elongation factor 1 alpha (tef1-α) sequences. This study will contribute to the isolation of indigenous beneficial fungi and the promotion of “plant-microbe” combined remediation.

References

  1. Abdel-Azeem, A.M. (2020) Taxonomy and biodiversity of the genus Chaetomium in different habitats. Recent Developments on Genus Chaetomium: 3–77. https://doi.org/10.1007/978-3-030-31612-9_1
  2. Alvarez, L.V., Groenewald, J.Z. & Crous, P.W. (2016) Revising the Schizoparmaceae: Coniella and its synonyms Pilidiella and Schizoparme. Studies in Mycology 85: 1–34. https://doi.org/10.1016/j.simyco.2016.09.001
  3. Baltruschat, H., Fodor, J., Harrach, B.D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A., Kogel, K.H., Schäfer, P., Schwarczinger, I., Zuccaro, A. & Skoczowski, A. (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. The New phytologist 180: 501–510. https://doi.org/10.1111/j.1469-8137.2008.02583.x
  4. Batista, M.J., Gonzalez-Fernandez, O., Abreu, M.M., Queralt, I. & Carvalho, M.L. (2017) Pioneer Mediterranean shrub species revegetating soils developed on mining soils/spoils. Land Degradation & Development 28: 718–730. https://doi.org/10.1002/ldr.2639
  5. Beavers, C., Ellis, R., Hanlon, E.A. & MacDonald, G.E. (2013) An overview of phosphate mining and reclamation in Florida. Citeseer 1–33. https://doi.org/10.1016/j.ecoleng.2005.01.014
  6. Botella, L., Santamaría, O. & Diez, J.J. (2010) Fungi associated with the decline of Pinus halepensis in Spain. Fungal Diversity 40: 1–11. https://doi.org/10.1007/s13225-010-0025-5
  7. Braga, R.M., Padilla, G. & Araújo, W.L. (2018) The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites. Critical reviews in microbiology 44: 759–778. https://doi.org/10.1080/1040841X.2018.1514364
  8. Cao, Y., Zhang, S., Wang, G., Li, T., Xu, X., Deng, O., Zhang, Y. & Pu, Y. (2017) Enhancing the soil heavy metals removal efficiency by adding HPMA and PBTCA along with plant washing agents. Journal of hazardous materials 339: 33–42. https://doi.org/10.1016/j.jhazmat.2017.06.007
  9. Chen, Q., Jiang, J.R., Zhang, G.Z., Cai, L. & Crous, P.W. (2015) Resolving the Phoma enigma. Studies in mycology 82: 137–217. https://doi.org/10.1016/j.simyco.2015.10.003
  10. Crous, P.W., Wingfield, M.J., Guarro, J., Hernández-Restrepo, M., Sutton, D.A., Acharya, K., Barber, P.A., Boekhout, T., Dimitrov, R.A., Dueñas, M., Dutta, A.K., Gené, J., Gouliamova, D.E., Groenewald, M., Lombard, L., Morozova, O.V., Sarkar, J., Smith, M., Stchigel, A.M., Wiederhold, N.P., Alexandrova, A.V., Antelmi, I., Armengol, J., Barnes, I., Cano-Lira, J.F., Ruiz, R., Contu, M., Courtecuisse, P.R., Silveira, A.L., Decock, C.A., Goes, A.D., Edathodu, J., Ercole, E., Firmino, A.C., Fourie, A., Fournier, J., Furtado, E.L., Geering, A.D., Gershenzon, J., Giraldo, A., Gramaje, D., Hammerbacher, A., He, X., Haryadi, D.S., Khemmuk, W., Kovalenko, A.E., Krawczynski, R., Laich, F., Lechat, C., Lopes, U.P., Madrid, H., Malysheva, E., Marin-Felix, Y., Martín, M.P., Mostert, L., Nigro, F., Pereira, O.L., Picillo, B., Pinho, D.B., Popov, E., Peláez, C.A., Rooney-Latham, S., Sandoval-Denis, M., Shivas, R.G., Silva, V., Stoilova-Disheva, M., Telleria, M.T., Ullah, C., Unsicker, S.B., Merwe, N.A., Vizzini, A., Wagner, H., Wong, P.T., Wood, A.R. & Groenewald, J.Z. (2015) Fungal Planet description sheets: 320–370. Persoon 34: 167–266. https://doi.org/10.3767/003158515X688433
  11. Dwibedi, V., Rath, S.K., Jain, S., Martínez-Argueta, N., Prakash, R., Saxena, S. & Rios-Solis, L. (2023) Key insights into secondary metabolites from various Chaetomium species. Applied microbiology and biotechnology 107: 1077–1093. https://doi.org/10.1007/s00253-023-12365-y
  12. Dzoyem, J.P., Melong, R., Tsamo, A.T., Maffo, T., Kapche, D.W., Ngadjui, B.T., McGaw, L.J. & Eloff, J.N. (2017) Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica. Revista Brasileira de Farmacognosia 27: 251–253. https://doi.org/10.1016/j.bjp.2016.08.011
  13. Fávaro, L.C., Sebastianes, F.L. & Araújo, W.L. (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PloS one 7: e36826. https://doi.org/10.1371/journal.pone.0036826
  14. Flores-Torres, G., Solis-Hernández, A.P., Vela-Correa, G., Rodríguez-Tovar, A.V., Cano-Flores, O., Castellanos-Moguel, J., Pérez, N.O., Chimal-Hernández, A., Moreno-Espíndola, I.P., Salas-Luévano, M.Á., Chávez-Vergara, B.M. & Rivera-Becerril, F. (2021) Pioneer plant species and fungal root endophytes in metal-polluted tailings deposited near human populations and agricultural areas in northern Mexico. Environmental science and pollution research international 28: 55072–55088. https://doi.org/10.1007/s11356-021-14716-6
  15. Glez-Peña, D., Gómez-Blanco, D., Reboiro-Jato, M., Fdez-Riverola, F. & Posada, D. (2010) ALTER: programoriented conversion of DNA and protein alignments. Nucleic Acids Research 38: 14–18. https://doi.org/10.1093/nar/gkq321
  16. Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. https://doi.org/10.1021/bk-1999-0734.ch008
  17. Harman, G.E. (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96: 190–194. https://doi.org/10.1094/PHYTO-96-0190
  18. Harwoko, H., Daletos, G., Stuhldreier, F., Lee, J., Wesselborg, S., Feldbrügge, M., Müller, W.E.G., Kalscheuer, R., Ancheeva, E. & Proksch, P. (2021) Dithiodiketopiperazine derivatives from endophytic fungi Trichoderma harzianum and Epicoccum nigrum. Natural product research 35: 257–265. https://doi.org/10.1080/14786419.2019.1627348
  19. Hou, X.Y., Liu, S.L., Cheng, F.Y., Zhang, Y.Q., Dong, S.K., Su, X.K. & Liu, G.H. (2019) Vegetation community composition along disturbance gradients of four typical open‐pit mines in Yunnan province of southwest China. Land Degradation & Development 30: 437–447. https://doi.org/10.1002/ldr.3234
  20. Hou, X., Liu, S., Zhao, S., Zhang, Y., Wu, X., Cheng, F. & Dong, S. (2018) Interaction mechanism between floristic quality and environmental factors during ecological restoration in a mine area based on structural equation modeling. Ecological Engineering 124: 23–30.6. https://doi.org/10.1016/j.ecoleng.2018.09.021
  21. Husna, Hussain, A., Shah, M., Hamayun, M., Qadir, M. & Iqbal, A. (2022) Heavy metal tolerant endophytic fungi Aspergillus welwitschiae improves growth, ceasing metal uptake and strengthening antioxidant system in Glycine max L. Environmental science and pollution research international 29: 15501–15515. https://doi.org/10.1007/s11356-021-16640-1
  22. Hyde K.D., Norphanphoun C., Maharachchikumbura S.S.N., Bhat D.J., Jones E.B.G., Bundhun D., Chen Y.J., Bao D.F., Boonmee S., Calabon M.S., Chaiwan N., Chethana K.W.T., Dai D.Q., Dayarathne M.C., Devadatha B., Dissanayake A.J., Dissanayake L.S., Doilom M., Dong W., Fan X.L., Goonasekara I.D., Hongsanan S., Huang S.K., Jayawardena R.S., Jeewon R., Karunarathna A., Konta S., Kumar V., Lin C.G., Liu J.K., Liu N.G., Luangsa-ard J., Lumyong S., Luo Z.L., Marasinghe D.S.Z., McKenzie E.H.C., Niego A.G.T., Niranjan M., Perera R.H., Phukhamsakda C., Rathnayaka A.R., Samarakoon M.C., Samarakoon S.M.B.C., Sarma V.V., Senanayake I.C., Shang Q.J., Stadler M., Tibpromma S., Wanasinghe D.N., Wei D.P., Wijayawardene N.N., Xiao Y.P., Yang J., Zeng X.Y., Zhang S.N. & Xiang M.M. (2020) Refined families of Sordariomycetes. Mycosphere 11: 305–1059. https://doi.org/10.5943/mycosphere/11/1/7
  23. Hyde, K.D., Chaiwan, N., Norphanphoun, C., Boonmee, S., Camporesi, E., Chethana, K.W., Dayarathne, M.C., de Silva, N.I., Dissanayake, A.J., Ekanayaka, A.H., Hongsanan, S., Huang, S., Jayasiri, S.C., Jayawardena, R.S., Jiang, H., Karunarathna, A., Lin, C., Liu, J., Liu, N., Lu, Y., Luo, Z., Maharachchimbura, S.S., Manawasinghe, I.S., Pem, D., Perera, R.H., Phukhamsakda, C., Samarakoon, M.C., Senwanna, C., Shang, Q., Tennakoon, D.S., Thambugala, K.M., Tibpromma, S., Wanasinghe, D.N., Xiao, Y., Yang, J., Zeng, X., Zhang, J., Zhang, S.N., Bulgakov, T.S., Bhat, D.J., Cheewangkoon, R., Goh, T., Jones, E.B., Kang, J., Jeewon, R., Liu, Z., Lumyong, S., Kuo, C., McKenzie, E.H., Wen, T., Yan, J. & Zhao, Q. (2018) Mycosphere notes 169–224. Mycosphere 9: 271–430. https://doi.org/10.5943/mycosphere/9/2/8
  24. Index Fungorum (2023) Available from: https://www.indexfungorum.org/ (accessed 3 January 2023).
  25. Jayasiri, S.C., Hyde, K.D., Jones, E.B.G., Jeewon, R., Ariyawansa, H.A., Bhat, J.D., Camporesi, E. & Kang, J.C. (2017) Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae). Mycosphere 8: 1080–1101. https://doi.org/10.5943/mycosphere/8/8/9
  26. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
  27. Kunze, G. (1817) Zehn neue Pilzgattungen. Mykologische Hefte 1: 1–18.
  28. Lei, D. & Duan, C. (2008) Restoration potential of pioneer plants growing on lead-zinc mine tailings in Lanping, southwest China. Journal of environmental sciences 20: 1202–1209. https://doi.org/10.1016/S1001-0742(08)62210-X
  29. Link, H.F. (1816) Observationes in ordines plantarum naturales. 2. Magazin der Gesellschaft Naturforschenden Freunde Berlin 7: 25–45.
  30. Liu, C., Song, Q., Ao, L., Zhang, N., An, H., Lin, H. & Dong, Y. (2022) Highly promoted phytoremediation with endophyte inoculation in multi-contaminated soil: plant biochemical and rhizosphere soil ecological functioning behavior. Environmental science and pollution research international 29: 89063–89080. https://doi.org/10.1007/s11356-022-21689-7
  31. Liu, Y.J., Whelen, S. & Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular biology and evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  32. McKelvey, V.E. (1967) Phosphate deposits. US Govt Print Off, Washington, USA, pp. 17–21.
  33. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop: 1–8. https://doi.org/10.1109/GCE.2010.5676129
  34. Monjezi, M., Shahriar, K., Dehghani, H. & Samimi Namin, F. (2009) Environmental impact assessment of open pit mining in Iran. Environmental geology 58: 205–216. https://doi.org/10.1007/s00254-008-1509-4
  35. Munford, K.E., Watmough, S.A., Rivest, M., Poulain, A., Basiliko, N. & Mykytczuk, N.C.S. (2020) Edaphic factors influencing vegetation colonization and encroachment on arsenical gold mine tailings near Sudbury, Ontario. Environmental pollution 264: 114680. https://doi.org/10.1016/j.envpol.2020.114680
  36. Nosratabadi, M., Kachuei, R., Rezaie, S. & Harchegani, A.B. (2018) Beta-tubulin gene in the differentiation of Fusarium species by PCR-RFLP analysis. Le infezioni in medicina 26: 52–60. https://doi.org/10.1016/j.fgb.2019.103251
  37. O’Donnell, K. & Cigelnik, E. (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular phylogenetics and evolution 7: 103–116. https://doi.org/10.1006/mpev.1996.0376
  38. Park, M.J., Park, J.H., Hong, S.H. & Shin, H.D. (2012) First asian report of leaf spot of Ambrosia trifida caused by Septoria epambrosiae. Plant disease 96: 289. https://doi.org/10.1094/PDIS-10-11-0845
  39. Patle, P.N., Navnage, N.P. & Ramteke, P. (2018) Endophytes in plant system: Roles in growth promotion, mechanism and their potentiality in achieving agriculture sustainability. International Journal of Chemical Studies 6: 270–274. https://doi.org/10.1016/j.micres.2015.11.008
  40. Pecundo, M.H., Dela Cruz, T.E.E., Chen, T., Notarte, K.I., Ren, H. & Li, N. (2021) Diversity, phylogeny and antagonistic activity of fungal endophytes associated with endemic species of Cycas (Cycadales) in China. Journal of fungi 7: 572. https://doi.org/10.3390/jof7070572
  41. Rambaut, A. (2021) FigTree. Tree figure drawing tool version 1.3.1. Institute of Evolutionary Biology, University of Edinburgh.
  42. Raza, M., Zhang, Z., Hyde, K.D., Diao, Y. & Cai, L. (2019) Culturable plant pathogenic fungi associated with sugarcane in southern China. Fungal Diversity 99: 1–104. https://doi.org/10.1007/s13225-019-00434-5
  43. Reta, G., Dong, X., Li, Z., Su, B.Z., Hu, X., Bo, H., Yu, D., Wan, H., Liu, J., Li, Y., Xu, G., Wang, K. & Xu, S. (2018) Environmental impact of phosphate mining and beneficiation: review. International Journal of Hydrology 2: 424–431. https://doi.org/10.15406/ijh.2018.02.00106
  44. Rossman, A., Farr, D. & Castlebury, L. (2007) A review of the phylogeny and biology of the Diaporthales. Mycoscience 48: 135–144. https://doi.org/10.1007/S10267-007-0347-7
  45. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  46. Seifert, K.A. & Gams, W. (2011) The genera of Hyphomycetes. Persoonia 27: 119–129. https://doi.org/10.3767/003158511X617435
  47. Shu, W.S., Ye, Z.H., Lan, C.Y., Zhang, Z.Q. & Wong, M.H. (2001) Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environment international 26: 389–394. https://doi.org/10.1016/s0160-4120(01)00017-4
  48. Singh, A.N., Raghubanshi, A.S. & Singh, J.S. (2004) Impact of native tree plantations on mine spoil in a dry tropical environment. Forest Ecology and Management 187: 49–60. https://doi.org/10.1016/S0378-1127(03)00309-8
  49. Spinelli, V., Brasili, E., Sciubba, F., Ceci, A., Giampaoli, O., Miccheli, A., Pasqua, G. & Persiani, A.M. (2022) Biostimulant effects of Chaetomium globosum and Minimedusa polyspora culture filtrates on Cichorium intybus plant: growth performance and metabolomic traits. Frontiers in plant science 13: 879076. https://doi.org/10.3389/fpls.2022.879076
  50. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  51. Suwannarach, N., Kumla, J., Sri-Ngernyuang, K. & Lumyong, S. (2016) A new endophytic fungus, Chrysofolia barringtoniae sp. nov., from Thailand. Mycoscience 57: 361–365. https://doi.org/10.1016/j.myc.2016.06.003
  52. Su, Z., Zeng, Y., Li, X., Perumal, A.B., Zhu, J., Lu, X., Dai, M., Liu, X. & Lin, F. (2021) The endophytic fungus Piriformospora indica-assisted alleviation of cadmium in tobacco. Journal of fungi 7: 675. https://doi.org/10.3390/jof7080675
  53. Taguiam, J.D., Evallo, E. & Balendres, M.A. (2021) Epicoccum species: Ubiquitous plant pathogens and effective biological control agents. European Journal of Plant Pathology 159: 713–725. https://doi.org/10.1007/s10658-021-02207-w
  54. Tennakoon, D.S., Kuo, C.H., Maharachchikumbura, S.S.N., Thambugala, K.M., Gentekaki, E., Phillips, A.J.L., Bhat, D.J., Wanasinghe, D.N., de Silva, N.I., Promputtha, I. & Hyde, K.D. (2021) Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Diversity 108: 1–215. https://doi.org/10.1007/s13225-021-00474-w
  55. Teng, S.C. (1996) Fungi of China. Mycotaxon, Ltd, Ithaca, pp. 1–586
  56. Tian, Y., Fu, X., Zhang, G., Zhang, R., Kang, Z., Gao, K. & Mendgen, K. (2022) Mechanisms in growth-promoting of cucumber by the endophytic fungus Chaetomium globosum strain ND35. Journal of fungi 8: 180. https://doi.org/10.3390/jof8020180
  57. Udagawa, S.I., Toyazaki, N. & Yaguchi, T. (1997) A new species of Chaetomium from house dust. Mycoscience 38: 399–402. https://doi.org/10.1007/BF02461679
  58. Verma, H., Kumar, D., Kumar, V., Kumari, M., Singh, S.K., Sharma, V.K., Droby, S., Santoyo, G., White, J.F. & Kumar, A. (2021) The potential application of endophytes in management of stress from drought and salinity in crop plants. Microorganisms 9: 1729. https://doi.org/10.3390/microorganisms9081729
  59. Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of bacteriology 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  60. Von Höhnel, F. (1918) Dritte vorlaufige Mitteilung mycologischer Ergebnisse (Nr. 201–304). Berichte der Deutschen Botanischen Gesellschaft 36: 309–317. https://doi.org/10.1111/j.1438-8677.1918.tb07278.x
  61. Wang, R.Z., Yang, J.J., Liu, H.Y., Sardans, J., Zhang, Y.H. & Wang, X.B. (2022a) Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology 103: e3616. https://doi.org/10.1002/ecy.3616
  62. Wang, S., Mu, T., Liu, R., Liu, S., Zhang, Z., Xia, J., Li, Z. & Zhang, X. (2022b) Coniella castanea sp. nov. on Castanea mollissima from Shandong province, China. Phytotaxa 559 (1): 25–34. https://doi.org/10.11646/phytotaxa.559.1.3
  63. Wang, X.W., Han, P.J., Bai, F.Y., Luo, A., Bensch, K., Meijer, M., Kraak, B., Han, D.Y., Sun, B.D., Crous, P.W. & Houbraken, J. (2022c) Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Studies in mycology 101: 121–243. https://doi.org/10.3114/sim.2022.101.03
  64. Wang, X.W., Houbraken, J., Groenewald, J.Z., Meijer, M., Andersen, B., Nielsen, K.F., Crous, P.W. & Samson, R.A. (2016a) Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Studies in mycology 84: 145–224. https://doi.org/10.1016/j.simyco.2016.11.005
  65. Wang, X.W., Lombard, L., Groenewald, J.Z., Li, J., Videira, S.I., Samson, R.A., Liu, X.Z. & Crous, P.W. (2016b) Phylogenetic reassessment of the Chaetomium globosum species complex. Persoonia 36: 83–133. https://doi.org/10.3767/003158516X689657
  66. Wang, X.W., Yang, F.Y., Meijer, M., Kraak, B., Sun, B.D., Jiang, Y.L., Wu, Y.M., Bai, F.Y., Seifert, K.A., Crous, P.W., Samson, R.A. & Houbraken, J. (2019) Redefining Humicola sensu stricto and related genera in the Chaetomiaceae. Studies in mycology 93: 65–153. https://doi.org/10.1016/j.simyco.2018.07.001
  67. White, T.J., Bruns, T., Lee, S.J.W.T. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  68. Yan, K., Luo, Y., Li, Y., Du, L., Gui, H. & Chen, S. (2023) Trajectories of soil microbial recovery in response to restoration strategies in one of the largest and oldest open-pit phosphate mine in Asia. Resources, Ecotoxicology and Environmental Safety 262: 115215. https://doi.org/10.1016/j.ecoenv.2023.115215
  69. Yan, K., Ranjitkar, S., Zhai, D., Li, Y., Xu, J., Li, B. & Lu, Y. (2017) Current re-vegetation patterns and restoration issues in degraded geological phosphorus-rich mountain areas: A synthetic analysis of central Yunnan, SW China. Plant diversity 39: 140–148. https://doi.org/10.1016/j.pld.2017.04.003
  70. Yan, K., Xu, J., Gao, W., Li, M., Yuan, Z., Zhang, F.S. & Elser, J.J. (2021) Human perturbation on phosphorus cycles in one of China’s most eutrophicated lakes. Resources, Environment and Sustainability 4: 100026. https://doi.org/10.1016/j.resenv.2021.100026
  71. Yan, K., Yuan, Z., Goldberg, S., Gao, W., Ostermann, A., Xu, J., Zhang, F. & Elser, J. (2019a) Phosphorus mitigation remains critical in water protection: A review and meta-analysis from one of China’s most eutrophicated lakes. The Science of the total environment 689: 1336–1347. https://doi.org/10.1016/j.scitotenv.2019.06.302
  72. Yan, L., Zhu, J., Zhao, X., Shi, J., Jiang, C. & Shao, D. (2019b) Beneficial effects of endophytic fungi colonization on plants. Applied microbiology and biotechnology 103: 3327–3340. https://doi.org/10.1007/s00253-019-09713-2
  73. Yang, E.F., Karunarathna, S.C., Tibpromma, S., Stephenson, S.L., Promputtha, I., Elgorban, A.M., Al-Rejaie, S.S. & Chomnunti, P. (2023a) Endophytic fungi associated with mango show in vitro antagonism against bacterial and fungal pathogens. Agronomy 13: 169. https://doi.org/10.3390/agronomy13010169
  74. Yang, E.F., Zhao, Z.X., Karunarathna, S.C., Karunarathna A., Tibpromma, S., Sun, Z.L., Dao, C.J., Ma, J.M., Duand, L.P., Du, L.P. & Yan, K. (2023b) A new host record of Bipolaris panici-miliacei from the roots of a pioneer plant (Saccharum rufipilum) in an abandoned phosphate mining site in southwest China. Chiang Mai Journal of Science 48: 1–11. https://doi.org/10.12982/CMJS.2023.044
  75. Yang, L., Zou, Y.N., Tian, Z.H., Wu, Q.S. & Kuča, K. (2021) Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Scientia Horticulturae 277: 109815. https://doi.org/10.1016/j.scienta.2020.109815
  76. Yuan, X., Guo, Z., Duan, C., Yang, J., Tang, H., Li, L., Li, T. & Liu, C. (2022) Alleviation of heavy metal stress and enhanced plant complex functional restoration in abandoned Pb–Zn mining areas by the nurse plant Coriaria nepalensis. Frontiers in Ecology and Evolution 10: 1006468. https://doi.org/10.3389/fevo.2022.1006468
  77. Zahoor, M., Irshad, M., Rahman, H., Qasim, M., Afridi, S.G., Qadir, M. & Hussain, A. (2017) Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicology and environmental safety 142: 139–149. https://doi.org/10.1016/j.ecoenv.2017.04.005
  78. Zhai, Y., Chen, Z., Malik, K., Wei, X. & Li, C. (2022) Effect of Fungal Endophyte Epichloë bromicola Infection on Cd Tolerance in Wild Barley (Hordeum brevisubulatum). Journal of fungi 8: 366. https://doi.org/10.3390/jof8040366.
  79. Zhang, W., Groenewald, J.Z., Lombard, L., Schumacher, R.K., Phillips, A.J.L. & Crous, P.W. (2021) Evaluating species in Botryosphaeriales. Persoonia 46: 63–115. https://doi.org/10.3767/persoonia.2021.46.03
  80. Zhang, Y., Wu, W. & Cai, L. (2017) Polyphasic characterisation of Chaetomium species from soil and compost revealed high number of undescribed species. Fungal biology 121: 21–43. https://doi.org/10.1016/j.funbio.2016.08.012
  81. Zhaxybayeva, O. & Gogarten, J.P. (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. MBC genomics 3: 3–4. https://doi.org/10.1186/1471-2164-3-4