Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-06-07
Page range: 139-149
Abstract views: 804
PDF downloaded: 320

Spiranthes minamitaniana (Orchidaceae), a new orchid species from Japan based on morphological and phylogenetic data

Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan. Institute for Advanced Research, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan.
Botanical Gardens, Osaka Metropolitan University 2000 Kisaichi, Katano City, Osaka, 576-0004, Japan. Field Science Center, Graduate School of Agricultural Science, Tohoku University 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan.
Botanical Gardens, Osaka Metropolitan University 2000 Kisaichi, Katano City, Osaka, 576-0004, Japan
Orchidaceae integrative taxonomy reproductive isolation SNP data species delimitation Spiranthes sinensis species complex Monocots

Abstract

The delimitation of species within the genus Spiranthes (Orchidaceae) is problematic due to the intricate interplay of phenotypic plasticity, ecological variation, and hybridization, making identification that relies solely on morphology inadequate. In light of morphological and phylogenetic data, we have described a self-pollinating species, S. minamitaniana within the Spiranthes sinensis species complex. Spiranthes minamitaniana shares several morphological features with S. hachijoensis, such as glabrous inflorescence rachis, ovaries, and sepals, a degenerated rostellum, pollinia without a viscidium, and papillate lip basal callosities. However, it can be distinguished by several morphological traits, including semicircular, weakly- or non-3-lobed stigma, and more conspicuous anther cap. Although S. minamitaniana is morphologically most similar to S. hachijoensis, phylogenetic analysis strongly suggested that S. minamitaniana has independently acquired a selfing reproductive mode and constitutes a separate genetic cluster from it. As such, this taxon is morphologically and phylogenetically distinct from other closely related species. Consequently, this taxon is morphologically and phylogenetically distinct from other closely related species.

References

  1. Ames, O. (1908) Orchidaceae: Illustrations and studies of the family Orchidaceae. Houghton, Mifflin. 53 pp.
    Boufford, D.E. & Zhang, W. (2007) Spiranthes sunii Boufford & Wenheng Zhang, sp. nov.; a new rheophytic orchid from Gansu Province, China. Harvard papers in botany 13: 261–266. https://doi.org/10.3100/1043-4534-13.2.261
    Brown, R. (1810) Prodromus florae novae Hollandae et insulae Van-Diemen. 1st ed. Taylor, London. 592 pp.
    Catling, P.M. (1982) Breeding systems of northeastern North American Spiranthes (Orchidaceae). Canadian Journal of Botany 60: 3017–3039. https://doi.org/10.1139/b82-358
    Doyle, J.J. & Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13–15.
    Dueck, L.A., Aygoren, D. & Cameron, K.M. (2014) A molecular framework for understanding the phylogeny of Spiranthes (Orchidaceae), a cosmopolitan genus with a North American center of diversity. American Journal of Botany 101: 1551–1571. https://doi.org/10.3732/ajb.1400225
    Hayakawa, H., Ohga, K., Miyata, H., Arakawa, R., Ito, K., Tebayashi, S., Ikeda, H. & Fukuda, T. (2013) Phylogenetic background of a glabrous individual of Spiranthes sinensis var. amoena (Orchidaceae) collected in Kochi prefecture, Japan. Journal of Phytogeography and Taxonomy 61: 45–50.
    Hsu, T.C. & Chung, S.W. (2014) Spiranthes hongkongensis (Orchidaceae): Newly recorded from Taiwan. Taiwan Journal of Biodiversity 16: 405–408.
    Hu, S.Y. & Barretto, G. (1976) New species and varieties of Orchidaceae from Hong Kong. Chung Chi Journal 13: 1–34.
    Huson, D.H. & Bryant, D. (2006) Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254–267. https://doi.org/10.1093/molbev/msj030
    IUCN (2019) Guidelines for using the IUCN red list categories and criteria. Version 14. Available from: http://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed 6 October 2022)
    Lin, T.P. & Lin, W.M. (2011) Newly discovered native orchids of Taiwan (IV). Taiwania 56: 315–322.
    Lindley, J. (1824) Spiranthes flexuosa. The Botanical Register 10: t. 823.
    Lindley, J. (1857) Contributions to the Orchidology of India.—No. 1. Journal of the Proceedings of the Linnean Society of London.Botany 1: 170–190. https://doi.org/10.1111/j.1095-8339.1857.tb02444.x
    Maekawa, F. (1971) The wild orchids of Japan in color. Seibundo-shinkosha, Tokyo. 495 pp.
    Oh, S.-H., Suh, H.-J., Seo, S.-W., Chung, K.-S. & Yukawa, T. (2022) A new species of Goodyera (Orchidaceae: Orchidoideae) from Korea and Japan. Journal of Plant Biology 65: 357–363. https://doi.org/10.1007/s12374-022-09358-1
    Pace, M.C. & Cameron, K.M. (2017) The systematics of the Spiranthes cernua species complex (Orchidaceae): Untangling the Gordian Knot. Systematic Botany 42: 1–30. https://doi.org/10.1600/036364417X696528
    Pace, M.C., Giraldo, G., Frericks, J., Lehnebach, C.A. & Cameron, K.M. (2019) Illuminating the systematics of the Spiranthes sinensis species complex (Orchidaceae): ecological speciation with little morphological differentiation. Botanical Journal of the Linnean Society 189: 36–62. https://doi.org/10.1093/botlinnean/boy072
    Persoon, C.H. (1807) Synopsis plantarum, seu Enchiridium botanicum, complectens enumerationem systematicam specierum hucusque cognitarum. Vol. 2. Parisiis Lutetiorum, C.F. Cramerum. 511 pp. https://doi.org/10.5962/bhl.title.638
    Richard, L.-C. (1817) De orchideis europaeis annotationes, praesertim ad genera dilucidanda spectantes. Ex typ. A. Belin, Parisiis. 232 pp. https://doi.org/10.5962/bhl.title.15465
    Rochette, N.C., Rivera-Colón, A.G. & Catchen, J.M. (2019) Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology 28: 4737–4754. https://doi.org/10.1111/mec.15253
    Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
    Suetsugu, K. (2021) Cremastra saprophytica (Orchidaceae: Epidendroideae), a new leafless autonomously self-pollinating orchid species from Gifu Prefecture, Japan. Phytotaxa 527: 89–96. https://doi.org/10.11646/phytotaxa.527.2.1
    Suetsugu, K. (2022) Living in the shadows: Gastrodia orchids lack functional leaves and open flowers. Plants, People, Planet 4: 418–422. https://doi.org/10.1002/ppp3.10281
    Suetsugu, K., Fukushima, K., Makino, T., Ikematsu, S., Sakamoto, T. & Kimura, S. (2023a) Transcriptomic heterochrony and completely cleistogamous flower development in the mycoheterotrophic orchid Gastrodia. New Phytologist 237: 323–338. https://doi.org/10.1111/nph.18495
    Suetsugu, K. & Hayakawa, H. (2019) Spiranthes hongkongensis SY Hu & Barretto (Orchidaceae): Newly discovered orchid on Ishigaki Island, Ryukyu Islands, Japan. Acta Phytotaxonomica et Geobotanica 70: 205–208.
    Suetsugu, K., Hirota, S.K., Hayakawa, H., Fujimori, S., Ishibashi, M., Hsu, T.-C. & Suyama, Y. (2023b) Spiranthes hachijoensis (Orchidaceae), a new species within the S. sinensis species complex in Japan, based on morphological, phylogenetic, and ecological evidence. Journal of Plant Research 136: 333–348. https://doi.org/10.1007/s10265-023-01448-6
    Suetsugu, K., Hirota, S.K., Hsu, T.-C., Kurogi, S., Imamura, A. & Suyama, Y. (2023c) Monotropastrum kirishimense (Ericaceae), a new mycoheterotrophic plant from Japan based on multifaceted evidence. Journal of Plant Research 136: 3–18. https://doi.org/10.1007/s10265-022-01422-8
    Suetsugu, K., Hirota, S.K., Nakato, N., Suyama, Y. & Serizawa, S. (2022) Morphological, ecological, and molecular phylogenetic approaches reveal species boundaries and evolutionary history of Goodyera crassifolia (Orchidaceae, Orchidoideae) and its closely related taxa. PhytoKeys 212: 111–134. https://doi.org/10.3897/phytokeys.212.91536
    Suetsugu, K., Hirota, S.K. & Suyama, Y. (2021) A new natural hybrid, Goodyera ×tanakae (Orchidaceae) from Japan with a discussion on the taxonomic identities of G. foliosa, G. sonoharae, G. velutina, G. ×maximo-velutina and G. henryi, based on morphological and molecular data. Taiwania 66: 277‒286.
    Suetsugu, K., Lin, J.-Z., Hsu, T.-C. & Hayakawa, H. (2020) Interspecific hybridization between Spiranthes australis and S. sinensis (Orchidaceae) in southern Taiwan. Acta Phytotaxonomica et Geobotanica 71: 177–184. https://doi.org/10.18942/apg.201922
    Sun, M. (1996) The allopolyploid origin of Spiranthes hongkongensis (Orchidaceae). American Journal of Botany 83: 252–260. https://doi.org/10.1002/j.1537-2197.1996.tb12702.x
    Surveswaran, S., Gowda, V. & Sun, M. (2018) Using an integrated approach to identify cryptic species, divergence patterns and hybrid species in Asian ladies’ tresses orchids (Spiranthes, Orchidaceae). Molecular Phylogenetics and Evolution 124: 106–121. https://doi.org/10.1016/j.ympev.2018.02.025
    Surveswaran, S., Kumar, P. & Sun, M. (2017) Spiranthes himalayensis (Orchidaceae, Orchidoideae) a new species from Asia. PhytoKeys 89: 115–128. https://doi.org/10.3897/phytokeys.89.19978
    Suyama, Y., Hirota, S.K., Matsuo, A., Tsunamoto, Y., Mitsuyuki, C., Shimura, A. & Okano, K. (2022) Complementary combination of multiplex high-throughput DNA sequencing for molecular phylogeny. Ecological Research 37: 171–181. https://doi.org/10.1111/1440-1703.12270
    Suyama, Y. & Matsuki, Y. (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Scientific Reports 5: 16963. https://doi.org/10.1038/srep16963
    Tao, Z.-B., Ren, Z.-X., Bernhardt, P., Liang, H., Li, H.-D., Zhao, Y.-H., Wang, H. & Li, D.-Z. (2018) Does reproductive isolation reflect the segregation of color forms in Spiranthes sinensis (Pers.) Ames complex (Orchidaceae) in the Chinese Himalayas? Ecology and Evolution 8: 5455–5469. https://doi.org/10.1002/ece3.4067
    Thiers, B. (2022) Index Herbariorum, New York Botanical Garden. Available from: http://sweetgum.nybg.org/science/ih/ (accessed 6 October 2022)
    Wright, S.I., Kalisz, S. & Slotte, T. (2013) Evolutionary consequences of self-fertilization in plants. Proceedings of the Royal Society B: Biological Sciences 280: 20130133. https://doi.org/10.1098/rspb.2013.0133