Abstract
Fossil microspherules suspected to be marine algal cysts of varying mineralogy are abundant in Paleozoic deposits worldwide. Positive identification of remineralized microspherule fossils is problematic and long debated, particularly for tasmanid species. Several hundred silica-rich microspherules were retrieved through complete maceration of black shale samples from the Givetian Oatka Creek Formation of the Appalachian Basin. Microspherules were analyzed visually through transmitted, incident light, and fluorescence microscopy. The structural features of these microspherules are evident and are interpreted to be Tasmanites sinuous. The images presented herein are the first fluorescence images showing in detail the life cycle stages of the genus Tasmanites. This work also confirms that this tasmanid species does extend into the Givetian as suspected from prior research.
References
Agi?, H.E.D.A., Moczyd?owska, M. & Canfield, D.E. (2016) Reproductive cyst and operculum formation in the Cambrian–Ordovician galeate-plexus microfossils. GFF 138 (2): 278–294. https://doi.org/10.1080/11035897.2015.1116603
Agi?, H., Moczyd?owska, M. & Yin, L.M. (2015) Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China. Journal of Paleontology 89 (1): 28–50. https://doi.org/10.1017/jpa.2014.4
Arthur, M.A. & Sageman, B.B. (2005) Sea-level control on source-rock development: perspectives from the Holocene Black Sea, the mid-Cretaceous Western Interior Basin of North America, and the Late Devonian Appalachian Basin. SEPM–Society for Sedimentary Geology Special Publication 82: 1–24. https://doi.org/10.2110/pec.05.82.0035
Bartlett, K., Kowalski, C., Bembia, P., Lash, G.G., Thaler, C. & Meehan, K.C. (2022) Freshwater and marine microfossils as evidence of flooding events in distal deltaic sequences of the Late Devonian Appalachian Basin, New York. Palaios. [In Review]
Boalch, G.T. & Guy-Ohlson, G. (1992) Tasmanites, the correct name for Pachysphaera (Prasinophyceae, Pterospermataceae). Taxonomy 41: 529–531. https://doi.org/10.2307/1222826
Bravo, I. & Figueroa, R.I. (2014) Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2 (1): 11–32. https://doi.org/10.3390/microorganisms2010011
Brett, C.E., Baird, G.C., Bartholomew, A.J., DeSantis, M.K. & Ver Straeten, C.A. (2011) Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America. Palaeogeography, Palaeoclimatology, Palaeoecology 304 (1–2): 21–53. https://doi.org/10.1016/j.palaeo.2010.10.009
Bruner, K.R., Walker-Milani, M. & Smosna, R. (2015) Lithofacies of the Devonian Marcellus shale in the eastern Appalachian Basin, USA. Journal of Sedimentary Research 85 (8): 937–954. https://doi.org/10.2110/jsr.2015.62
Burden, E.T., Quinn, L., Nowlan, G.S. & Bailey-Nill, L.A. (2002) Palynology and micropaleontology of the Clam Bank Formation (Lower Devonian of western Newfoundland, Canada. Palynology 26: 185–215. https://doi.org/10.2113/0260185
Caplan, M.L. & Bustin, R.M. (1996) Factors governing organic matter accumulation and preservation in a marine petroleum source rock from the Upper Devonian to Lower Carboniferous Exshaw Formation, Alberta. Bulletin of Canadian Petroleum Geology 44 (3): 474–494.
Cavalier-Smith, T. (1998) A revised six-kingdom system of life. Biological Reviews 73: 203–266. https://doi.org/10.1111/j.1469-185X.1998.tb00030.x
Chamberlain, J.A., Chamberlain, R.B. & Brown, J.O. (2016) A mineralized alga and acritarch dominated microbiota from the Tully Formation (Givetian) of Pennsylvania, USA. Geosciences 6 (4): 57. https://doi.org/10.3390/geosciences6040057
Fensome, R.A., Williams, G.L., Barss, M.S., Freeman, J.M. & Hill, J.M. (1990) Acritarchs and Fossil Prasinophytes: An Index to Genera, Species, and Intraspecific Taxa; American Association of Stratigraphic Palynologists Foundation Contributions Series No. 25. American Association of Stratigraphic Palynologists Foundation, Houston, TX, USA, 771 pp.
Filer, J.K. (2002) Late Frasnian sedimentation cycles in the Appalachian basin—possible evidence for high frequency eustatic sea-level changes. Sedimentary Geology 154 (1–2): 31–52. https://doi.org/10.1016/S0037-0738(02)00159-8
Guy-Ohlson, D. (1988) Developmental stages in the life cycle of Mesozoic Tasmanites. Botanica Marina 31: 447–456. https://doi.org/10.1515/botm.1988.31.5.447
Hackley, P.C., Walters, C.C., Keleman, S.R., Mastalerz, M. & Lowers, H.A. (2017) Organic petrology and micro-spectroscopy of Tasmanites microfossils: applications to kerogen transformations in the early oil window. Organic Geochemistry 114: 23–44. https://doi.org/10.1016/j.orggeochem.2017.09.002
Haddad, E.E., Boyer, D.L., Droser, M.L., Lee, B.K., Lyons, T.W. & Love, G.D. (2018) Ichnofabrics and chemostratigraphy argue against persistent anoxia during the Upper Kellwasser Event in New York State. Palaeogeography, Palaeoclimatology, Palaeoecology 490: 178–190. https://doi.org/10.1016/j.palaeo.2017.10.025
He, R., Lu, W., Junium, C.K., Ver Straeten, C.A. & Lu, Z. (2020) Paleo-redox context of the Mid-Devonian Appalachian Basin and its relevance to biocrises. Geochimica et Cosmochimica Acta 257: 328–340. https://doi.org/10.1016/j.gca.2019.12.019
Jux, U. (1968) Uber den Feinbau der Wandung bei Tasmanites Newton, Palaeontographica. Abteilung B 124: 112–124.
Kelly, A.A., Cohen, P.A. & Boyer, D.L. (2019) Tiny keys to unlocking the Kellwasser events: Detailed characterization of organic walled microfossils associated with extinction in western New York State. Palaios 34 (2): 96–104. https://doi.org/10.2110/palo.2018.063
Knoll, A.H. & Swett, K. (1985) Micropalaeontology of the Late Proterozoic Veteranen Group, Spitsbergen. Palaeontology 28: 451–473
Kus, J., Hackley, P. & Ostertag-Henning, C. (2012) Confocal laser scanning microscopy (CLSM) applied to micro-structural analysis of alginite in the Huron Member of the Ohio Shale, Appalachian Basin, USA. Lectures and Posters GeoHannover: 1–3.
Lelono, E.B. (2019) The Gondwanan Green Alga Tasmanites sp. in the Permian Lacustrine Deposits of West Timor. Indonesian Journal on Geoscience 6 (3): 255–266. https://doi.org/10.17014/ijog.6.3.255-266
Lewis, L.A. & McCourt, R.M. (2004) Green algae and the origin of land plants. American Journal of Botany 91 (10): 1535–1556. https://doi.org/10.3732/ajb.91.10.1535
Li, Y. & Schieber, J. (2015) On the origin of a phosphate enriched interval in the Chattanooga Shale (Upper Devonian) of Tennessee—a combined sedimentologic, petrographic, and geochemical study. Sedimentary Geology 329: 40–61. https://doi.org/10.1016/j.sedgeo.2015.09.005
Liu, B., Schieber, J. & Mastalerz, M. (2019a) Petrographic and micro-FTIR study of organic matter in the Upper Devonian New Albany Shale during thermal maturation: Implications for kerogen transformation. In: Camp, W., Milliken, K., Taylor, K., Fishman, N., Hackley, P. & MacQuaker, J. (eds.) Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks: AAPG Memoir 120: 165–188. https://doi.org/10.1306/13672216M1213380
Liu, B., Schieber, J., Mastalerz, M. & Teng, J. (2019b) Organic matter content and type variation in the sequence stratigraphic context of the Upper Devonian New Albany Shale, Illinois Basin. Sedimentary Geology 383: 101–120. https://doi.org/10.1016/j.sedgeo.2019.02.004
Liu, B., Schieber, J., Mastalerz, M. & Teng, J. (2020) Variability of rock mechanical properties in the sequence stratigraphic context of the Upper Devonian New Albany Shale, Illinois Basin. Marine and Petroleum Geology 112: 104068. https://doi.org/10.1016/j.marpetgeo.2019.104068
Martín-Closas, C. (2003) The fossil recordand evolution of freshwater plants: a review. Geologica Acta 1 (4): 315–338.
Meehan, K.C., Kowalski, C., Bartlett, K., Li, I. & Bembia, P. (2020) Successful complete digestion of well lithified shale and extraction of microfossils from Devonian beds in western New York. Stratigraphy 17 (3): 205–212. https://doi.org/10.29041/strat.17.3.205-212
Moczyd?owska, M. (2010) Life cycle of early Cambrian microalgae from the Skiagia-plexus acritarchs. Journal of Paleontology 84 (2): 216–230. https://doi.org/10.1666/09-117R.1
Moczyd?owska, M. (2016) Algal affinities of Ediacaran and Cambrian organic-walled microfossils with internal reproductive bodies: Tanarium and other morphotypes. Palynology 40 (1): 83–121. https://doi.org/10.1080/01916122.2015.1006341
Moczyd?owska, M., Landing, E.D., Zang, W. & Palacios, T. (2011) Proterozoic phytoplankton and timing of chlorophyte algae origins. Palaeontology 54 (4): 721–733. https://doi.org/10.1111/j.1475-4983.2011.01054.x
Mouro, L.D., Zato?, M., Fernandez, A.C. & Waichel, B.L. (2016) Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana. Scientific Reports 6 (1): 1–7. https://doi.org/10.1038/srep19215
Mullins, G.L., Aldridge, R.J., Dorning, K.J., Hérissé, A.L., Jun, L., Moczyd?wska-Vidal, M., Molyneux, S.G., Servais, T. & Wicander, R. (2007) The PhytoPal Taxonomic Database (Taxon List).
Newton, E.T. (1875) On “tasmanite” and Australian “white coal”. Geological Magazine Series 2 (12): 337–342. https://doi.org/10.1017/S001675680016008X
Paris, F., Bouranhrouh, A. & Hérissé, A.L. (2000) The effects of the final stages of the Late Ordovician glaciation on marine microfossils (chitinozoans, acritarchs, leiospheres) in well Nl-2 (NE Algerian Sahara). Review of Palaeobotany and Palynology 113 (1–3): 87–104. https://doi.org/10.1016/S0034-6667(00)00054-3
Provo, L.J. (1976) Stratigraphy and sedimentology of radioactive Devonian--Mississippian shales of the central Appalachian Basin. Final report, April 1, 1975--December 31, 1976 (No. GJBX-37 (77). Cincinnati University, OH (USA). https://doi.org/10.2172/7111783
Quintavalle, M. & Playford, G. (2006) Palynostratigraphy of Ordovician strata, Canning Basin, Western Australia. -Part Two: chitinozoans and biostratigraphy. In: Palaeontographica Abteilung B Band 275 (Lieferung 4–6): 89–131. https://doi.org/10.1127/palb/275/2006/89
Revill, A.T., Volkman, J.K., O’Leary, T., Summons, R.E., Boreham, C.J., Banks, M.R. & Denwer, K. (1994) Hydrocarbon biomarkers, thermal maturity, and depositional setting of tasmanite oil shales from Tasmania, Australia. Geochimica et Cosmochimica Acta 58: 3803–3822. https://doi.org/10.1016/0016-7037(94)90365-4
Ryder, R.T., Hackley, P.C., Trippi, M.H. & Alimi, H. (2013) Evaluation of thermal maturity in the low maturity Devonian shales of the northern Appalachian Basin. American Association of Petroleum Geologists Search and Discovery Article 10477.
Sageman, B.B., Murphy, A.E., Werne, J.P., Van Straeten, C.A., Hollander, D.J. & Lyons, T.W. (2003) A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin. Chemical Geology 195 (1–4): 229–273. https://doi.org/10.1016/S0009-2541(02)00397-2
Samuelsson, J., Dawes, P.R. & Vidal, G. (1999) Organic-walled microfossils from the Proterozoic Thule Supergroup, Northwest Greenland. Precambrian Research 96: 1–23. https://doi.org/10.1016/S0301-9268(98)00123-5
Schieber, J. (1996) Early diagenetic silica deposition in algal cysts and spores; a source of sand in black shales?. Journal of Sedimentary Research 66 (1): 175–183. https://doi.org/10.1306/D42682ED-2B26-11D7-8648000102C1865D
Schieber, J. & Baird, G. (2001) On the origin and significance of pyrite spheres in Devonian black shales of North America. Journal of Sedimentary Research 71: 155–166. https://doi.org/10.1306/051600710155
Schopf, J.M., Wilson, L.R. & Bentall, R. (1944) An Annotated Synopsis of Paleozoic Fossil Spores and the Definition of Generic Groups; Illinois State Geological Survey, Report of Investigations 91. State of Illinois, Division of the Geological Survey, Urbana, IL, USA, 74 pp. https://doi.org/10.5962/bhl.title.61674
Tappan, H. (1980) The Paleobiology of Plant Protists. W.H. Freeman & Co.: San Francisco, CA, USA, 1028 pp.
Tel’nova, O.P. (2012) Morphology and ultrastructure of Devonian prasinophycean algae (Chlorophyta). Paleontological Journal 46 (5): 543–548. https://doi.org/10.1134/S0031030112050127
Teyssèdre, B. (2006) Are the green algae (phylum Viridiplantae) two billion years old?. Carnets de Géologie (A03): 1–15. https://doi.org/10.4267/2042/5836
Van Staal, C.R., Whalen, J.B., Valverde-Vaquero, P., Zagorevski, A. & Rogers, N. (2009) Pre-Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of the northern Appalachians. Geological Society of London, Special Publications 327 (1): 271–316. https://doi.org/10.1144/SP327.13
Ver Straeten, C.A. (1997) Stratigraphic synthesis and tectonic and sequence stratigraphic framework, upper Lower and Middle Devonian, northern and central Appalachian basin. Unpublished Ph.D. Thesis, University at Rochester, New York, 800 pp.
Vigran, J.O., MØrk, A., Forseberg, A.W., Weiss, H.M. & Weitschat, W. (2008) Tasmanites algae—contributors to the Middle Triassic hydrocarbon source rocks of Svalbard and the Barents Shelf. Polar Research 27 (3): 360–371. https://doi.org/10.1111/j.1751-8369.2008.00084.x
Weary, D.J., Ryder, R.T. & Nyahay, R. (2000) Thermal Maturity Patterns (CAI and% R) ? in the Ordovician and Devonian Rocks of the Appalachian Basin in New York State. US Department of the Interior, US Geological Survey Open-File Report 2000-496. https://doi.org/10.3133/ofr2000496
Werne, J.P., Sageman, B.B., Lyons, T.W. & Hollander, D.J. (2002) An integrated assessment of a “type euxinic” deposit: evidence for multiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation. American Journal of Science 302 (2): 110–143. https://doi.org/10.2475/ajs.302.2.110
Wicander, E.R. (1983) A Catalog and Biostratigraphic Distribution of North American Devonian Acritarchs; American Association of Stratigraphic Palynologists Foundation Contributions Series No. 10. American Association of Stratigraphic Palynologists Foundation: Houston, TX, USA, 133pp.
Wicander, R. & Playford, G. (2008) Upper Ordovician microphytoplankton of the Bill’s Creek Shale and Stonington Formation, Upper Peninsula of Michigan, USA: biostratigraphy and paleogeographic significance. Revue de Micropaléontologie 51 (1): 39–66. https://doi.org/10.1016/j.revmic.2007.01.001
Winslow, M.R. (1962) Plant Spores and Other Microfossils from Upper Devonian and Lower Mississippian Rocks of Ohio; United States Geological Survey Professional Paper 364. United States Geological Survey: Reston, VA, USA, 90 pp. https://doi.org/10.3133/pp364
