Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-07-14
Page range: 211-220
Abstract views: 46
PDF downloaded: 80

Devonian smooth-walled tasmanids and new insights of life-cycle descriptions through fluorescence microscopy

Permanent Address: Buffalo Museum of Science, Collections Department, 1020 Humboldt Parkway, Buffalo, New York 14211, United States of America; Former Address: State University of New York at Buffalo, Department of Geology, 126 Cooke Hall, Buffalo, New York, 14260, United States of America
fluorescence microscopy marine algal cysts pellicle cysts resting cyst Tasmanites Algae

Abstract

Fossil microspherules suspected to be marine algal cysts of varying mineralogy are abundant in Paleozoic deposits worldwide. Positive identification of remineralized microspherule fossils is problematic and long debated, particularly for tasmanid species. Several hundred silica-rich microspherules were retrieved through complete maceration of black shale samples from the Givetian Oatka Creek Formation of the Appalachian Basin. Microspherules were analyzed visually through transmitted, incident light, and fluorescence microscopy. The structural features of these microspherules are evident and are interpreted to be Tasmanites sinuous. The images presented herein are the first fluorescence images showing in detail the life cycle stages of the genus Tasmanites. This work also confirms that this tasmanid species does extend into the Givetian as suspected from prior research.

References

<p>Adl, S.M., Alastair, G.B., Simpson, M.A., Farmer, R.A., Andersen, O.R., Barta, J.R., Bowser, S.S., Brugerolle, G., Fensome, R.A., Fredericq, S., James, T.Y., Karpov, S., Kurgens, P., Krug, J., Lane, C.E., Lewis, L.A., Lodge, J., Lynn, D.H., Mann, D.G.., McCourt, R.M., Mendoza, L., Moestrup, Ø., Mozley-Standridge, S.E., Nerad, T.A., Shearer, C.A., Smirnov, A.V., Spiegel, F.W. &amp; Taylor, M.F.J.R. (2005) The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists. <em>Journal of Eukaryotic Microbiology</em> 52: 399–451. https://doi.org/10.1111/j.1550-7408.2005.00053.x</p>
<p>Agić, H.E.D.A., Moczydłowska, M. &amp; Canfield, D.E. (2016) Reproductive cyst and operculum formation in the Cambrian–Ordovician galeate-plexus microfossils. <em>GFF</em> 138 (2): 278–294. https://doi.org/10.1080/11035897.2015.1116603</p>
<p>Agić, H., Moczydłowska, M. &amp; Yin, L.M. (2015) Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China. <em>Journal of Paleontology</em> 89 (1): 28–50. https://doi.org/10.1017/jpa.2014.4</p>
<p>Arthur, M.A. &amp; Sageman, B.B. (2005) Sea-level control on source-rock development: perspectives from the Holocene Black Sea, the mid-Cretaceous Western Interior Basin of North America, and the Late Devonian Appalachian Basin. <em>SEPM–Society for Sedimentary Geology Special Publication </em>82: 1–24. https://doi.org/10.2110/pec.05.82.0035</p>
<p>Bartlett, K., Kowalski, C., Bembia, P., Lash, G.G., Thaler, C. &amp; Meehan, K.C. (2022) Freshwater and marine microfossils as evidence of flooding events in distal deltaic sequences of the Late Devonian Appalachian Basin, New York. <em>Palaios.</em> [In Review]</p>
<p>Boalch, G.T. &amp; Guy-Ohlson, G. (1992) <em>Tasmanites</em>, the correct name for Pachysphaera (Prasinophyceae, Pterospermataceae). <em>Taxonomy</em> 41: 529–531. https://doi.org/10.2307/1222826</p>
<p>Bravo, I. &amp; Figueroa, R.I. (2014) Towards an ecological understanding of dinoflagellate cyst functions.&nbsp;<em>Microorganisms</em>&nbsp;2 (1): 11–32. https://doi.org/10.3390/microorganisms2010011</p>
<p>Brett, C.E., Baird, G.C., Bartholomew, A.J., DeSantis, M.K. &amp; Ver Straeten, C.A. (2011) Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America.&nbsp;<em>Palaeogeography, Palaeoclimatology, Palaeoecology</em>&nbsp;304 (1–2): 21–53. https://doi.org/10.1016/j.palaeo.2010.10.009</p>
<p>Bruner, K.R., Walker-Milani, M. &amp; Smosna, R. (2015) Lithofacies of the Devonian Marcellus shale in the eastern Appalachian Basin, USA.&nbsp;<em>Journal of Sedimentary Research</em>&nbsp;85 (8): 937–954. https://doi.org/10.2110/jsr.2015.62</p>
<p>Burden, E.T., Quinn, L., Nowlan, G.S. &amp; Bailey-Nill, L.A. (2002) Palynology and micropaleontology of the Clam Bank Formation (Lower Devonian of western Newfoundland, Canada. <em>Palynology </em>26: 185–215. https://doi.org/10.2113/0260185</p>
<p>Caplan, M.L. &amp; Bustin, R.M. (1996) Factors governing organic matter accumulation and preservation in a marine petroleum source rock from the Upper Devonian to Lower Carboniferous Exshaw Formation, Alberta.<em>&nbsp;Bulletin of Canadian Petroleum Geology</em>&nbsp;44 (3): 474–494.</p>
<p>Cavalier-Smith, T. (1998) A revised six-kingdom system of life. <em>Biological Reviews</em> 73: 203–266. https://doi.org/10.1111/j.1469-185X.1998.tb00030.x</p>
<p>Chamberlain, J.A., Chamberlain, R.B. &amp; Brown, J.O. (2016) A mineralized alga and acritarch dominated microbiota from the Tully Formation (Givetian) of Pennsylvania, USA. <em>Geosciences</em> 6 (4): 57. https://doi.org/10.3390/geosciences6040057</p>
<p>Fensome, R.A., Williams, G.L., Barss, M.S., Freeman, J.M. &amp; Hill, J.M. (1990) <em>Acritarchs and Fossil Prasinophytes: An Index to Genera, Species, and Intraspecific Taxa; American Association of Stratigraphic Palynologists Foundation Contributions Series No. 25</em>. American Association of Stratigraphic Palynologists Foundation, Houston, TX, USA, 771 pp.</p>
<p>Filer, J.K. (2002) Late Frasnian sedimentation cycles in the Appalachian basin—possible evidence for high frequency eustatic sea-level changes.&nbsp;<em>Sedimentary Geology</em>&nbsp;154 (1–2): 31–52. https://doi.org/10.1016/S0037-0738(02)00159-8</p>
<p>Guy-Ohlson, D. (1988) Developmental stages in the life cycle of Mesozoic Tasmanites.<em> Botanica Marina</em> 31: 447–456. https://doi.org/10.1515/botm.1988.31.5.447</p>
<p>Hackley, P.C., Walters, C.C., Keleman, S.R., Mastalerz, M. &amp; Lowers, H.A. (2017) Organic petrology and micro-spectroscopy of Tasmanites microfossils: applications to kerogen transformations in the early oil window.&nbsp;<em>Organic Geochemistry</em>&nbsp;114: 23–44. https://doi.org/10.1016/j.orggeochem.2017.09.002</p>
<p>Haddad, E.E., Boyer, D.L., Droser, M.L., Lee, B.K., Lyons, T.W. &amp; Love, G.D. (2018) Ichnofabrics and chemostratigraphy argue against persistent anoxia during the Upper Kellwasser Event in New York State.<em>&nbsp;Palaeogeography, Palaeoclimatology, Palaeoecology&nbsp;</em>490: 178–190. https://doi.org/10.1016/j.palaeo.2017.10.025</p>
<p>He, R., Lu, W., Junium, C.K., Ver Straeten, C.A. &amp; Lu, Z. (2020) Paleo-redox context of the Mid-Devonian Appalachian Basin and its relevance to biocrises.&nbsp;<em>Geochimica et Cosmochimica Acta</em> 257: 328–340. https://doi.org/10.1016/j.gca.2019.12.019</p>
<p>Jux, U. (1968) Uber den Feinbau der Wandung bei <em>Tasmanites</em> Newton, <em>Palaeontographica. Abteilung B</em> 124: 112–124.</p>
<p>Kelly, A.A., Cohen, P.A. &amp; Boyer, D.L. (2019) Tiny keys to unlocking the Kellwasser events: Detailed characterization of organic walled microfossils associated with extinction in western New York State.&nbsp;<em>Palaios</em> 34 (2): 96–104. https://doi.org/10.2110/palo.2018.063</p>
<p>Knoll, A.H. &amp; Swett, K. (1985) Micropalaeontology of the Late Proterozoic Veteranen Group, Spitsbergen. <em>Palaeontology</em> 28: 451–473</p>
<p>Kus, J., Hackley, P. &amp; Ostertag-Henning, C. (2012) Confocal laser scanning microscopy (CLSM) applied to micro-structural analysis of alginite in the Huron Member of the Ohio Shale, Appalachian Basin, USA.&nbsp;<em>Lectures and Posters GeoHannover:</em> 1–3.</p>
<p>Lelono, E.B. (2019) The Gondwanan Green Alga Tasmanites sp. in the Permian Lacustrine Deposits of West Timor.&nbsp;<em>Indonesian Journal on Geoscience</em>&nbsp;6 (3): 255–266. https://doi.org/10.17014/ijog.6.3.255-266</p>
<p>Lewis, L.A. &amp; McCourt, R.M. (2004) Green algae and the origin of land plants. <em>American Journal of Botany</em> 91 (10): 1535–1556. https://doi.org/10.3732/ajb.91.10.1535</p>
<p>Li, Y. &amp; Schieber, J. (2015) On the origin of a phosphate enriched interval in the Chattanooga Shale (Upper Devonian) of Tennessee—a combined sedimentologic, petrographic, and geochemical study.&nbsp;<em>Sedimentary Geology&nbsp;</em>329: 40–61. https://doi.org/10.1016/j.sedgeo.2015.09.005</p>
<p>Liu, B., Schieber, J. &amp; Mastalerz, M. (2019a) Petrographic and micro-FTIR study of organic matter in the Upper Devonian New Albany Shale during thermal maturation: Implications for kerogen transformation. <em>In:</em> Camp, W., Milliken, K., Taylor, K., Fishman, N., Hackley, P. &amp; MacQuaker, J. (eds.) Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks: <em>AAPG Memoir</em> 120: 165–188. https://doi.org/10.1306/13672216M1213380</p>
<p>Liu, B., Schieber, J., Mastalerz, M. &amp; Teng, J. (2019b) Organic matter content and type variation in the sequence stratigraphic context of the Upper Devonian New Albany Shale, Illinois Basin.&nbsp;<em>Sedimentary Geology&nbsp;</em>383: 101–120. https://doi.org/10.1016/j.sedgeo.2019.02.004</p>
<p>Liu, B., Schieber, J., Mastalerz, M. &amp; Teng, J. (2020) Variability of rock mechanical properties in the sequence stratigraphic context of the Upper Devonian New Albany Shale, Illinois Basin.<em>&nbsp;Marine and Petroleum Geology</em>&nbsp;112: 104068. https://doi.org/10.1016/j.marpetgeo.2019.104068</p>
<p>Martín-Closas, C. (2003) The fossil recordand evolution of freshwater plants: a review. <em>Geologica Acta </em>1 (4): 315–338.</p>
<p>Meehan, K.C., Kowalski, C., Bartlett, K., Li, I. &amp; Bembia, P. (2020) Successful complete digestion of well lithified shale and extraction of microfossils from Devonian beds in western New York. <em>Stratigraphy</em> 17 (3): 205–212. https://doi.org/10.29041/strat.17.3.205-212</p>
<p>Moczydłowska, M. (2010) Life cycle of early Cambrian microalgae from the Skiagia-plexus acritarchs. <em>Journal of Paleontology</em> 84 (2): 216–230. https://doi.org/10.1666/09-117R.1</p>
<p>Moczydłowska, M. (2016) Algal affinities of Ediacaran and Cambrian organic-walled microfossils with internal reproductive bodies: Tanarium and other morphotypes. <em>Palynology </em>40 (1): 83–121. https://doi.org/10.1080/01916122.2015.1006341</p>
<p>Moczydłowska, M., Landing, E.D., Zang, W. &amp; Palacios, T. (2011) Proterozoic phytoplankton and timing of chlorophyte algae origins. <em>Palaeontology</em> 54 (4): 721–733. https://doi.org/10.1111/j.1475-4983.2011.01054.x</p>
<p>Mouro, L.D., Zatoń, M., Fernandez, A.C. &amp; Waichel, B.L. (2016) Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana.&nbsp;<em>Scientific Reports</em>&nbsp;6 (1): 1–7. https://doi.org/10.1038/srep19215</p>
<p>Mullins, G.L., Aldridge, R.J., Dorning, K.J., Hérissé, A.L., Jun, L., Moczydłwska-Vidal, M., Molyneux, S.G., Servais, T. &amp; Wicander, R. (2007) The PhytoPal Taxonomic Database (Taxon List).</p>
<p>Newton, E.T. (1875) On “tasmanite” and Australian “white coal”. <em>Geological Magazine Series</em> 2 (12): 337–342. https://doi.org/10.1017/S001675680016008X</p>
<p>Paris, F., Bouranhrouh, A. &amp; Hérissé, A.L. (2000) The effects of the final stages of the Late Ordovician glaciation on marine microfossils (chitinozoans, acritarchs, leiospheres) in well Nl-2 (NE Algerian Sahara).&nbsp;<em>Review of Palaeobotany and Palynology&nbsp;</em>113 (1–3): 87–104. https://doi.org/10.1016/S0034-6667(00)00054-3</p>
<p>Provo, L.J. (1976)&nbsp;<em>Stratigraphy and sedimentology of radioactive Devonian--Mississippian shales of the central Appalachian Basin. Final report, April 1, 1975--December 31, 1976&nbsp;(No. GJBX-37 (77).</em> Cincinnati University, OH (USA). https://doi.org/10.2172/7111783</p>
<p>Quintavalle, M. &amp; Playford, G. (2006) Palynostratigraphy of Ordovician strata, Canning Basin, Western Australia. -Part Two: chitinozoans and biostratigraphy. <em>In:</em> <em>Palaeontographica Abteilung B </em>Band 275 (Lieferung 4–6): 89–131. https://doi.org/10.1127/palb/275/2006/89</p>
<p>Revill, A.T., Volkman, J.K., O’Leary, T., Summons, R.E., Boreham, C.J., Banks, M.R. &amp; Denwer, K. (1994) Hydrocarbon biomarkers, thermal maturity, and depositional setting of tasmanite oil shales from Tasmania, Australia. <em>Geochimica et Cosmochimica Acta </em>58: 3803–3822. https://doi.org/10.1016/0016-7037(94)90365-4</p>
<p>Ryder, R.T., Hackley, P.C., Trippi, M.H. &amp; Alimi, H. (2013) Evaluation of thermal maturity in the low maturity Devonian shales of the northern Appalachian Basin.&nbsp;<em>American Association of Petroleum Geologists Search and Discovery Article</em>&nbsp;10477.</p>
<p>Sageman, B.B., Murphy, A.E., Werne, J.P., Van Straeten, C.A., Hollander, D.J. &amp; Lyons, T.W. (2003) A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin.&nbsp;<em>Chemical Geology</em> 195 (1–4): 229–273. https://doi.org/10.1016/S0009-2541(02)00397-2</p>
<p>Samuelsson, J., Dawes, P.R. &amp; Vidal, G. (1999) Organic-walled microfossils from the Proterozoic Thule Supergroup, Northwest Greenland. <em>Precambrian Research</em> 96: 1–23. https://doi.org/10.1016/S0301-9268(98)00123-5</p>
<p>Schieber, J. (1996) Early diagenetic silica deposition in algal cysts and spores; a source of sand in black shales?.&nbsp;<em>Journal of Sedimentary Research</em>&nbsp;66 (1): 175–183. https://doi.org/10.1306/D42682ED-2B26-11D7-8648000102C1865D</p>
<p>Schieber, J. &amp; Baird, G. (2001) On the origin and significance of pyrite spheres in Devonian black shales of North America. <em>Journal of Sedimentary Research</em> 71: 155–166. https://doi.org/10.1306/051600710155</p>
<p>Schopf, J.M., Wilson, L.R. &amp; Bentall, R. (1944) <em>An Annotated Synopsis of Paleozoic Fossil Spores and the Definition of Generic Groups; Illinois State Geological Survey, Report of Investigations 91</em>. State of Illinois, Division of the Geological Survey, Urbana, IL, USA, 74 pp. https://doi.org/10.5962/bhl.title.61674</p>
<p>Tappan, H. (1980) <em>The Paleobiology of Plant Protists</em>. W.H. Freeman &amp; Co.: San Francisco, CA, USA, 1028 pp.</p>
<p>Tel’nova, O.P. (2012) Morphology and ultrastructure of Devonian prasinophycean algae (Chlorophyta). <em>Paleontological Journal</em> 46 (5): 543–548. https://doi.org/10.1134/S0031030112050127</p>
<p>Teyssèdre, B. (2006) Are the green algae (phylum Viridiplantae) two billion years old?.<em> Carnets de Géologie </em>(A03): 1–15. https://doi.org/10.4267/2042/5836</p>
<p>Van Staal, C.R., Whalen, J.B., Valverde-Vaquero, P., Zagorevski, A. &amp; Rogers, N. (2009) Pre-Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of the northern Appalachians.<em>&nbsp;Geological Society of London, Special Publications </em>327 (1): 271–316. https://doi.org/10.1144/SP327.13</p>
<p>Ver Straeten, C.A. (1997) <em>Stratigraphic synthesis and tectonic and sequence stratigraphic framework, upper Lower and Middle Devonian, northern and central Appalachian basin</em>. Unpublished Ph.D. Thesis, University at Rochester, New York, 800 pp.</p>
<p>Vigran, J.O., MØrk, A., Forseberg, A.W., Weiss, H.M. &amp; Weitschat, W. (2008) Tasmanites algae—contributors to the Middle Triassic hydrocarbon source rocks of Svalbard and the Barents Shelf.&nbsp;<em>Polar Research</em>&nbsp;27 (3): 360–371. https://doi.org/10.1111/j.1751-8369.2008.00084.x</p>
<p>Weary, D.J., Ryder, R.T. &amp; Nyahay, R. (2000)&nbsp;<em>Thermal Maturity Patterns (CAI and% R) ̥ in the Ordovician and Devonian Rocks of the Appalachian Basin in New York State</em>. US Department of the Interior, US Geological Survey Open-File Report 2000-496. https://doi.org/10.3133/ofr2000496</p>
<p>Werne, J.P., Sageman, B.B., Lyons, T.W. &amp; Hollander, D.J. (2002) An integrated assessment of a “type euxinic” deposit: evidence for multiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation.&nbsp;<em>American Journal of Science </em>302 (2): 110–143. https://doi.org/10.2475/ajs.302.2.110</p>
<p>Wicander, E.R. (1983) <em>A Catalog and Biostratigraphic Distribution of North American Devonian Acritarchs; American Association of Stratigraphic Palynologists Foundation Contributions Series No. 10.</em> American Association of Stratigraphic Palynologists Foundation: Houston, TX, USA, 133pp.</p>
<p>Wicander, R. &amp; Playford, G. (2008) Upper Ordovician microphytoplankton of the Bill’s Creek Shale and Stonington Formation, Upper Peninsula of Michigan, USA: biostratigraphy and paleogeographic significance.&nbsp;<em>Revue de Micropaléontologie&nbsp;</em>51 (1): 39–66. https://doi.org/10.1016/j.revmic.2007.01.001</p>
<p>Winslow, M.R. (1962) <em>Plant Spores and Other Microfossils from Upper Devonian and Lower Mississippian Rocks of Ohio; United States Geological Survey Professional Paper 364</em>. United States Geological Survey: Reston, VA, USA, 90 pp. https://doi.org/10.3133/pp364</p>