Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-04-27
Page range: 37-51
Abstract views: 198
PDF downloaded: 2

Diaporthe orixae sp. nov., an endophytic species isolated from Orixa japonica in southern China

School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, P.R. China; Guizhou Academy of Testing and Analysis, Guiyang 550000, P.R. China; School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, P.R. China
School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, P.R. China; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, P.R. China; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, P.R. China
School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, P.R. China; Guizhou Academy of Testing and Analysis, Guiyang 550000, P.R. China
1 novel species Diaporthales microfungi Sordariomycetes taxonomy Fungi

Abstract

In this study, a novel endophytic fungus, Diaporthe orixae, and a new host record of Diaporthe caryae were obtained from a medicinal plant, Orixa japonica in southern China. Phylogenetic analyses based on a combination of ITS, tef1-α, β-tub, cal, and his3 datasets confirmed that D. orixae is a distinct species, which is sister to D. sackstonii (BRIP 54669b). Diaporthe orixae sp. nov. differs from D. sackstonii in having larger conidiomata and smaller conidiogenous cells and alpha conidia on morphological examination. The new species and new host record are reported with taxonomic descriptions and illustrations.

References

Carbone, I. & Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556. https://doi.org/10.1080/00275514.1999.12061051

Chernomor, O., Von Haeseler, A. & Minh, B.Q. (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic biology 65: 997–1008.

Dissanayake, A.J., Phillips, A., Hyde, K.D., Yan, J. & Li, X. (2017) The current status of species in Diaporthe. Mycosphere 8 (5): 1106–1156. https://doi.org/10.5943/mycosphere/8/5/5

Dissanayake, A.J., Chen, Y.Y. & Liu, J.K. (2020a) Unravelling Diaporthe species associated with woody hosts from Karst Formations (Guizhou) in China. Journal of Fungi 6 (4): 251. https://doi.org/10.3390/jof6040251

Dissanayake, A.J., Bhunjun, C.S., Maharachchikumbura, S.S.N. & Liu, J.K. (2020b) Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 11: 2653–2677. https://doi.org/10.5943/mycosphere/11/1/18

Funayama, S., Tanaka, R., Kumekawa, Y., Noshita, T., Mori, T., Kashiwagura, T. & Murata, K. (2001) Rat small intestine muscle relaxation alkaloids from Orixa japonica leaves. Biological and Pharmaceutical Bulletin 24: 100–102. https://doi.org/10.1248/bpb.24.100

Guarnaccia, V. & Crous, P.W. (2017) Emerging citrus diseases in Europe caused by species of Diaporthe. IMA fungus 8 (2): 317–334. https://doi.org/10.5598/imafungus.2017.08.02.07

Gao, Y., Liu, F., Duan, W., Crous, P.W. & Cai, L. (2017) Diaporthe is paraphyletic. IMA fungus 8 (1): 153–187. https://doi.org/10.5598/imafungus.2017.08.01.11

Glass, N.L. & Donaldson, G. (1995) Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995

Gomes, R., Glienke, C., Videira, S., Lombard, L., Groenewald, J. & Crous, P. (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31: 1–41. https://doi.org/10.3767/003158513X666844

Guo, Y.S., Crous, P.W., Bai, Q., Fu, M., Yang, M.M., Wang, X.H., Du, Y.M., Hong, N., Xu, W.X. & Wang, G.P. (2020) High diversity of Diaporthe species associated with pear shoot canker in China. Persoonia-Molecular Phylogeny and Evolution of Fungi 45: 132–162. https://doi.org/10.3767/persoonia.2020.45.05

Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281

Hyde, K.D. & Soytong, K. (2008) The fungal endophyte dilemma. Fungal Diversity 33 (33): 163–173.

Hyde, K.D., Jeewon, R., Chen, Y.J., Bhunjun, C.S., Calabon, M.S., Jiang, H.B., Lin, C.G., Norphanphoun, C., Sysouphanthong, P., Pem, D., Tibpromma, S., Zhang, Q., Doilom, M., Jayawardena, R.S., Liu, J.K., Maharachchikumbura, S.S.N., Phukhamsakda, C., Phookamsak, R., Al-Sadi, A.M., Thongklang, N., Wang, Y., Gafforov, Y., Jones, E.B.G. & Lumyong, S. (2020) The numbers of fungi: is the descriptive curve flattening? Fungal Diversity 103: 219–271. https://doi.org/10.1007/s13225-020-00458-2

Jeewon, R. & Hyde, K.D. (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7 (11): 1669–1677. https://doi.org/10.5943/mycosphere/7/11/4

Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108

Liu, X.C., Lai, D., Liu, Q.Z., Zhou, L., Liu, Q. & Liu, Z.L. (2016) Bioactivities of a new pyrrolidine alkaloid from the root barks of Orixa japonica. Molecules 21 (12): 1665. https://doi.org/10.3390/molecules21121665

Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In: SC10 Workshop on Gateway Computing Environments (GCE10). New Orleans, LA. pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129

Mostert, L., Crous, P.W., Kang, J.C. & Phillips, A.J.L. (2001) Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia 93: 146–167. https://doi.org/10.1080/00275514.2001.12061286

Nisa, H., Kamili, A.N., Nawchoo, I.A., Shafi, S., Shameem, N. & Bandh, S.A. (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microbial Pathogenesis 82: 50–59. https://doi.org/10.1016/j.micpath.2015.04.001

Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300

Nylander, J.A.A. (2004) MrModeltest Version 2. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University, Uppsala.

O’Donnell, K. & Cigelnik, E. (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are noorthologous. Molecular Phylogenetics and Evolution 7: 103–116. https://doi.org/10.1006/mpev.1996.0376

Ono, H., Kuwahara, Y. & Nishida, R. (2004) Hydroxybenzoic acid derivatives in a nonhost rutaceous plant, Orixa japonica, deter both oviposition and larval feeding in a Rutaceae-feeding swallowtail butterfly, Papilio xuthus L. Journal of chemical ecology 30 (2): 287–301. https://doi.org/10.1023/B:JOEC.0000017978.73061.a0

Rambaut, A. & Drummond, A. (2008) FigTree: Tree figure drawing tool, version 1.2. 2. Institute of Evolutionary Biology, University of Edinburgh.

Rashmi, M., Kushveer, J.S., Sarma, V.V. (2019) A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10 (1): 798–1079. https://doi.org/10.5943/mycosphere/10/1/19

Rehner, S.A & Uecker, F.A. (1994) Nuclear ribosomal internal transcribed spacer phylogeny and host diversity in the coelomycete Phomopsis. Canadian Journal of Botany 72: 1666–1674. https://doi.org/10.1139/b94-204

Santos, J.M., Correia, V.G. & Phillips, A.J.L. (2010) Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Fungal Biology 114: 255–270. https://doi.org/10.1016/j.funbio.2010.01.007

Santos, J.M., Vrande?i?, K., ?osi?, J., Duvnjak, T. & Phillips, A.J.L. (2011) Resolving the Diaporthe species occurring on soybean in Croatia. Persoonia: Molecular Phylogeny and Evolution of Fungi 27: 9–19. https://doi.org/10.3767/003158511X603719

Saravanakumar, K., Sriram, B., Sathiyaseelan, A., Hu, X., Mariadoss, A.V.A., MubarakAli, D. & Wang, M.H. (2021) Molecular identification, volatile metabolites profiling, and bioactivities of an indigenous endophytic fungus (Diaporthe sp.). Process Biochemistry 102: 72–81. https://doi.org/10.1016/j.procbio.2020.12.002

Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Su, H., Kang, J.C., Cao, J.J., Mo, L. & Hyde, K.D. (2014) Medicinal plant endophytes produce analogous bioactive compounds. Chiang Mai Journal of Science 41 (1): 1–13.

Thompson, S.M., Tan, Y.P., Shivas, R.G., Neate, S.M., Morin, L., Bissett, A. & Aitken, E.A.B. (2015) Green and brown bridges between weeds and crops reveal novel Diaporthe species in Australia. Persoonia: Molecular Phylogeny and Evolution of Fungi 35: 39–49. https://doi.org/10.3767/003158515X687506

Thompson, S.M., Tan, Y.P., Young, A.J., Neate, S.M., Aitken, E.A. & Shivas, R.G. (2011) Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia 27: 80–89. https://doi.org/10.3767/003158511X617110

Udayanga, D., Castlebury, L.A., Rossman, A.Y. & Hyde, K.D. (2014) Species limits in Diaporthe: molecular re-assessment of D. citri, D. cytosporella, D. foeniculina and D. rudis. Persoonia: Molecular Phylogeny and Evolution of Fungi 32: 83–101. https://doi.org/10.3767/003158514X679984

Udayanga, D., Liu, X., Crous, P.W., McKenzie, E.H., Chukeatirote, E. & Hyde, K.D. (2012) A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal diversity 56 (1): 157–171. https://doi.org/10.1007/s13225-012-0190-9

Udayanga, D., Xingzhong, L., McKenzie, E.H.C., Chukeatirote, E., Bahkali, A.H.A. & Hyde, K.D. (2011) The genus Phomopsis: biology, applications, species concepts and names of common pathogens. Fungal Diversity 50: 189–225. https://doi.org/10.1007/s13225-011-0126-9

Uecker, F.A. (1988) A world list of Phomopsis names with notes on nomenclature, morphology and biology. Mycologia Memoir 13: 1–231.

Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27 (2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

Wang, X., Guo, Y., Du, Y., Yang, Z., Huang, X., Hong, N., Xu, W. & Wang, G. (2021) Characterization of Diaporthe species associated with peach constriction canker, with two novel species from China. MycoKeys 80: 77–90. https://doi.org/10.3897/mycokeys.80.63816

Wehmeyer, L.E. (1933) The genus Diaporthe Nitschke and its segregates. University of Michigan Studies, Science Series 9: 1–349.

Yang, Q., Fan, X.L., Guarnaccia, V. & Tian, C.M. (2018) High diversity of Diaporthe species associated with dieback diseases in China, with twelve new species described. MycoKeys 39: 97–149. https://doi.org/10.3897/mycokeys.39.26914

Yang, Q., Jiang, N. & Tian, C.M. (2020) Three new Diaporthe species from Shaanxi province, China. MycoKeys 67: 1–18. https://doi.org/10.3897/mycokeys.67.49483

Yang, Q., Jiang, N. & Tian, C.M. (2021) New species and records of Diaporthe from Jiangxi Province, China. MycoKeys 77: 41–64. https://doi.org/10.3897/mycokeys.77.59999

Ying, Z., Yan, M., Zhou, M., He, X. & Cheng, R. (2021) Characterization of the complete chloroplast genome of the medicinal plant Orixa japonica (Rutaceae) in Zhejiang Province and its phylogenetic analysis within family Rutaceae. Mitochondrial DNA Part B 6: 1734–1736. https://doi.org/10.1080/23802359.2021.1931511

How to Cite

Lu, Q.-T., Zhang, J.-Y., Sun, Y.-R., Tang, X., Lu, Y.-Z. & Zhang, Z. (2022)

Diaporthe orixae sp. nov., an endophytic species isolated from Orixa japonica in southern China

. Phytotaxa 544 (1): 37–51. https://doi.org/10.11646/phytotaxa.544.1.3