Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-02-02
Page range: 192-208
Abstract views: 50
PDF downloaded: 2

Timaviella dunensis sp. nov. from sand dunes of the Baltic Sea, Germany, and emendation of Timaviella edaphica (Elenkin) O.M. Vynogr. & Mikhailyuk (Synechococcales, Cyanobacteria) based on an integrative approach

M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereschenkivska Str. 2, Kyiv 01024, Ukraine; Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria; University of Rostock, Institute of Biological Sciences, Department of Applied Ecology and Phycology, Albert-Einstein-Strasse 3, Rostock, D-18057, Germany
M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereschenkivska Str. 2, Kyiv 01024, Ukraine
Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
University of Rostock, Institute of Biological Sciences, Department of Applied Ecology and Phycology, Albert-Einstein-Strasse 3, Rostock, D-18057, Germany
M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereschenkivska Str. 2, Kyiv 01024, Ukraine
University of Rostock, Institute of Biological Sciences, Department of Applied Ecology and Phycology, Albert-Einstein-Strasse 3, Rostock, D-18057, Germany
integrative approach 16S rRNA 16S-23S ITS new species Timaviella cyanobacteria Synechococcales biological soil crusts Algae

Abstract

Timaviella Sciuto & Moro is a recently established cryptic genus of cyanobacteria separated from the morphologically close Leptolyngbya due to clear differences in the 16S rRNA gene sequence and the 16S-23S ITS region secondary structure. Conducting research on biological soil crusts in coastal ecotopes of Ukraine and Germany, we repeatedly observed thin filamentous cyanobacteria morphologically corresponding to the common terrestrial species Leptolyngbya edaphica (Elenkin) Anagnostidis & Komárek. Molecular data  based on 16S rRNA gene sequence comparison of the original strains of the morphospecies indicated unambiguous assignment to  the genus Timaviella. Based on this finding, we proposed the new nomenclatural combination Timaviella edaphica (Elenkin) O.M. Vynogr. & Mikhailyuk in our previous publication. Deeper molecular study of the four original strains which were morphologically identified as T. edaphica based on the 16S rRNA gene concatenated with the 16S-23S ITS region and 16S-23S ITS secondary structure analysis showed that they are not identical. Three of them (isolated from biocrusts of Black Sea coast and forest path near Kyiv, Ukraine) had high similarity both in 16S rRNA (99.7–100%) and 16S-23S ITS (99.8–100%) hence actually representing T. edaphica. The strain Us-6-3 isolated from biocrusts on sand dunes of Usedom Island in the Baltic Sea, Germany, differs both from original strains of T. edaphica and all published Timaviella species in 16S rRNA gene sequence identity, as well as in sequence and structure of the 16S-23S ITS region. Here we describe Timaviella dunensis sp. nov. and give an expanded description of T. edaphica based on morphological and molecular features. A tabular review of Timaviella species with data on their phenotypic and genotypic features, ecology and distribution is included.

References

<p>Akaike, H. (1974) A new look at the statistical model identification. <em>Automatic Control, IEEE Transactions on Automatic Control</em> 19: 716–723. https://doi.org/10.1109/TAC.1974.1100705</p>
<p>Anagnostidis, K. &amp; Komárek, J. (1988) Modern approach to the classification system of cyanophytes. 3. Oscillatoriales.<em> Algological Studies</em> 50–53: 327–472.</p>
<p>Becerra-Absalón, I., Johansen, J.R., Osorio-Santos, K., Montejano, G. (2020) Two new <em>Oculatella</em> (Oculatellaceae, Cyanobacteria) species in soil crusts from tropical semiarid uplands of México. <em>Fottea, Olomouc</em> 20: 160–170.&nbsp; https://doi.org/10.5507/fot.2020.010</p>
<p>Bischoff, H.W. &amp; Bold, H.C. (1963) <em>Phycological studies IV</em>. <em>Some soil algae from Enchanted Rock and related algal species</em>. University of Texas Publications 6318, Austin, 95 pp.</p>
<p>Byun, Y. &amp; Han, K. (2009) PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. <em>Bioinformatics</em> 25 (11): 1435–1437.&nbsp; https://doi.org/10.1093/bioinformatics/btp252</p>
<p>Casamatta, D.A.,Vis, M.L. &amp; Sheath, R.G. (2003) Cryptic species in cyanobacterial systematics: a case study of <em>Phormidium retzii </em>(Oscillatoriales) using RAPD molecular markers and 16S rDNA sequence data.<em> Aquatic Botany</em> 77: 295–309.&nbsp; https://doi.org/10.1016/j.aquabot.2003.08.005</p>
<p>Davydov, D., Shalygin, S. &amp; Vilnet, A. (2020) New cyanobacterium&nbsp;<em>Nodosilinea svalbardensis sp. nov.</em>&nbsp;(Prochlorotrichaceae, Synechococcales) isolated from alluvium in Mimer river valley of the Svalbard archipelago. <em>Phytotaxa </em>442: 61–79. https://doi.org/10.11646/phytotaxa.442.2</p>
<p>Dvořák, P., Hindák, F., Hašler, P., Hindáková, A. &amp; Poulíčková, A. (2014) Morphological and molecular studies of <em>Neosynechococcus sphagnicola gen. et sp. nov.</em>(Cyanobacteria, Synechococcales). <em>Phytotaxa </em>170: 024–034.&nbsp; https://doi.org/10.11646/phytotaxa.170.1.3</p>
<p>Dvořák, P., Poulíčková, A., Hašler, P., Belli, M., Casamatta, D. &amp; Papini, A. (2015) Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. <em>Biodiversity and Conservation</em> 24: 739–757. https://doi.org/10.1007/s10531-015-0888-6</p>
<p>Elenkin, A.A. (1949) <em>Monographia Algarum Cyanophycearum Aquidulcium et Terrestrium in finibus URSS inventarum, Spec. pt 2.</em> AN USSR Press, Moscow; Leningrad [Rus.]</p>
<p>Ellis, E.A. (2006) Corrected formulation for Spurr low viscosity embeddig medium using the replacement Epoxide ERL 4221. <em>Microscopy and Microanalysis</em> 12: 288–289.&nbsp; https://doi.org/10.1017/S1431927606062660</p>
<p>Erwin, P.M. &amp; Thacker, R.W. (2008) Cryptic diversity of the symbiotic cyanobacterium <em>Synechococcus spongiarum </em>among sponge host. <em>Molecular Ecology </em>17: 2937–2947. https://doi.org/10.1111/j.1365-294X.2008.03808.x</p>
<p>González-Reséndiz, L., Johansen, J.R., Léon-Tejera, H., Sanchez, L., Segal-Kischinevzky, C., Escobar-Sánchez, V. &amp; Morales, M. (2019) A bridge too far in naming species: a total evidence approach does not support recognition of four species in <em>Desertifilum</em> (cyanobacteria). <em>Journal of Phycology </em>55: 898‒911.&nbsp; https://doi.org/10.1111/jpy.12867</p>
<p>Guiry, M.D. &amp; Guiry, G.M. (2021) AlgaeBase. Worldwide electronic publication, Nat. Univ. Ireland, Galway. Available from: http://www. algaebase.org (accessed 25 July 2021)</p>
<p>Holzinger, A., Roleda, M.Y. &amp; Lütz, C. (2009) The vegetative arctic green alga <em>Zygnema</em> is insensitive to experimental UV exposure. <em>Micron</em> 40: 831–838.&nbsp; https://doi.org/10.1016/j.micron.2009.06.008</p>
<p>Jahodářová, E., Dvořák, P., Hašler, P., Holušová, K. &amp; Poulíčková, A. (2017) <em>Elainella gen. nov</em>.: a new tropical cyanobacterium characterized using a complex genomic approach. <em>European Journal of Phycology</em> 53: 39–51. https://doi.org/10.1080/09670262.2017.1362591</p>
<p>Jung, P., Mikhailyuk, T., Emrich, D., Baumann, K., Dultz, S. &amp; Büdel, B. (2020) Shifting Boundaries: ecological and geographical range extension based on three new species in the cyanobacterial genera <em>Aliterella</em>, <em>Cyanocohniella</em> and <em>Oculatella</em>. <em>Journal of Phycology </em>56: 1216–1231. https://doi.org/10.1111/jpy.13025</p>
<p>Katoh, K. &amp; Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. <em>Molecular Biology and Evolution</em> 30: 772–780.&nbsp; https://doi.org/10.1093/molbev/mst010</p>
<p>Klymchuk, D.O., Brown, C.S., Chapman, D.K., Vorobyova, T.V. &amp; Martyn, G.M. (2001) Cytochemical localization of calcium in soybean root cap cells in microgravity. <em>Advances in Space Research</em> 27 (5): 967–972.&nbsp; https://doi.org/10.1016/S0273-1177(01)00160-0</p>
<p>Komárek, J. &amp; Anagnostidis, K. (2005) <em>Cyanoprokaryota. </em>2. <em>Oscillatoriales.</em> <em>Süsswasserflora von Mitteleuropa</em>, Bd 19/2, Elsevier Spectr., München.</p>
<p>Kondratyeva, N.V. (1968) <em>Class Hormogoniophyceae. Identification manual of freshwater algae of Ukrainian SSR</em>, Vol. 1, pt 2, Naukova Dumka Press, Kyiv [Ukr.]</p>
<p>Konstantinou,&nbsp;D., Voultsiadou, E., &nbsp;Panteris,E., Zervou,S.-K., Hiskia, A. &amp; Gkelis, S. (2019) <em>Leptothoe</em>, a new genus of marine cyanobacteria (Synechococcales) and three new species associated with sponges from the Aegean Sea. <em>Journal of Phycology </em>55: 882–897. https://doi.org/10.1111/jpy.12866</p>
<p>Mai, T., Johansen, J.R., Pietrasiak, N., Bohunická, M. &amp; Martin, M.P. (2018) Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. <em>Phytotaxa</em> 365 (1): 1–59.&nbsp; https://doi.org/10.11646/phytotaxa.365.1.1</p>
<p>Marin, B., Nowack, E.C.M. &amp; Melkonian, M. (2005) A plastid in the making: evidence for a second primary endosymbiosis. <em>Protist</em> 156: 425–432. https://doi.org/10.1016/j.protis.2005.09.001</p>
<p>Mesfin, M., Johansen, J.R., Pietrasiak, N. &amp; Baldarelli, L.M. (2020) <em>Nostoc oromo&nbsp;sp. nov.</em> (Nostocales, Cyanophyceae) from Ethiopia: a new species based on morphological and molecular evidence. <em>Phytotaxa </em>224 (1): 81–93.&nbsp; https://doi.org/10.11646/phytotaxa.433.2</p>
<p>Mikhailyuk, T.І., Vinogradova, O.N., Glaser, K. &amp; Karsten, U. (2016) New taxa for the flora of Ukraine, in the context of modern approaches to taxonomy of <em>Cyanoprokaryota/Cyanobacteria. International Journal on Algae</em> 18 (4): 301–320.&nbsp; https://doi.org/10.1615/InterJAlgae.v18.i4.10</p>
<p>Mikhailyuk, T.I., Vinogradova, O., Glaser, K., Demchenko, E.M. &amp; Karsten, U. (2018) Diversity of terrestrial algae of the Cape Kazantip (the Sea of Azov, Ukraine) with special reference to their phylogeny and ecology. <em>International Journal on Algae</em> 20: 313–338.&nbsp; https://doi.org/10.1615/InterJAlgae.v20.i4.10</p>
<p>Mikhailyuk, T., Glaser, K., Tsarenko, P., Demchenko, E. &amp; Karsten, U. (2019) Composition of biological soil crusts from sand dunes of the Baltic Sea coast, in the context of an integrative approach to the taxonomy of microalgae and cyanobacteria. <em>European Journal of Phycology</em> 54: 263–290. https://doi.org/10.1080/09670262.2018.1557257</p>
<p>Osorio-Santos, K., Pietrasiak, N., Bohunická, M., Miscoe, L.H., Kováčik, L., Martin, M.P. &amp; Johansen, J.R. (2014) Seven new species of <em>Oculatella </em>(Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. <em>European Journal of Phycology </em>49: 450–470.&nbsp; https://doi.org/10.1080/09670262.2014.976843</p>
<p>Pietrasiak, N., Osorio-Santos, K., Shalygin, S., Martin, M.P. &amp; Johansen, J.R. ( 2019). When is a lineage a species? A case study in <em>Myxacorys</em> <em>gen. nov.</em> (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. <em>Journal of Phycology</em> 55: 976–996.&nbsp; https://doi.org/10.1111/jpy.12897</p>
<p>Ronquist, F. &amp; Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. <em>Bioinformatics</em> 19: 1572–1574.&nbsp; https://doi.org/10.1093/bioinformatics/btg180</p>
<p>Schulz, K., Mikhailyuk, T., Dreßler, M., Leinweber, P. &amp; Karsten, U. (2016) Biological soil crusts from coastal dunes at the Baltic Sea:cyanobacterial and algal biodiversity and relatedsoil properties. <em>Microbial Ecology</em> 71: 178–193.&nbsp; https://doi.org/10.1007/s00248-015-0691-7</p>
<p>Sciuto, K., Moschin, E. &amp; Moro, I. (2017) Cryptic cyanobacterial diversity in the Giant Cave (Trieste, Italy): the new genus <em>Timaviella </em>(Leptolyngbyaceae). <em>Cryptogamie, Algologie </em>38: 285–323.&nbsp; https://doi.org/10.7872/crya/v38.iss4.2017.285</p>
<p>Shalygin, S., Pietrasiak, N., Gomez, F., Mlewski, C., Gerard, E. &amp; Johansen, J.R. (2018) <em>Rivularia halophila</em> <em>sp. nov.</em> (Nostocales, Cyanobacteria): the first species of <em>Rivularia</em> described with the modern polyphasic approach. <em>European Journal of Phycology</em> 53 (4): 537–548. https://doi.org/10.1080/09670262.2018.1479887</p>
<p>Shalygin, S., Shalygina, R., Redkina, V.V., Gargas, C.B. &amp; Johansen, J.R. (2020) Description of <em>Stenomitos kolaenensis</em> and <em>S. hiloensis</em> <em>sp. nov.</em> (Leptolyngbyaceae, Cyanobacteria) with an emendation of the genus. <em>Phytotaxa </em>440 (2): 72–84. https://doi.org/10.11646/phytotaxa.440.2.3</p>
<p>Song, G., Jiang, Y. &amp; Li, R. (2015) <em>Scytolyngbya timoleontis </em>gen et <em>sp. nov.</em> (Leptolyngbyaceae, Cyanobacteria): a novel false branching Cyanobacteria from China. <em>Phytotaxa </em>224 (1): 72–84. https://doi.org/10.11646/phytotaxa.224.1.5</p>
<p>Tamura, K., Stecher, G., Peterson, D., Filipski, A. &amp; Kumar, S. (2013) MEGA 6: molecular evolutionary genetics analysis version 6.0. <em>Molecular Biology and Evolution</em> 30: 2725–2729. https://doi.org/10.1093/molbev/mst197</p>
<p>Vaulina, E.N. (1959) On the systematic position of the soil form <em>Plectonema puteale </em>(Kirchn.) Hansg. <em>Bot. Mat. Dept. Spore Plants</em> 12: 19–22.</p>
<p>Vinogradova, O. &amp; Mikhailyuk, T. (2018) On the taxonomy and nomenclature of some terrestrial taxa of <em>Plectonema</em> s. l. (Сyanophyceae). 1. The case of <em>Plectonema edaphicum.</em> <em>International Journal on Algae </em>20 (3): 211–224.&nbsp; https://doi.org/10.1615/InterJAlgae.v20.i3.10</p>
<p>Vinogradova, O., Kovalenko, O.V., Wasser, S.P., Nevo, E. &amp; Weinstein-Evron, M. (1998) Species diversity gradient to darkness stress in blue-green algae/cyanobacteria: a microscale test in a prehistoric cave, Mount Carmel, Israel. <em>Israel Journal of Plant Sciences </em>46: 366–378.&nbsp; https://doi.org/10.1080/07929978.1998.10676732</p>
<p>Vinogradova, O., Nevo, E. &amp; Wasser, S.P. (2009) Algae of the Sefunim Cave (Israel): species diversity affected by light, humidity and rock stresses. <em>International Journal on Algae </em>11: 99–116.&nbsp; https://doi.org/10.1615/InterJAlgae.v11.i2.10</p>
<p>Vinogradova, O., Mikhailyuk, T., Glaser, K., Holzinger, A. &amp; Karsten, U. (2017) New species of <em>Oculatella</em> (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine. <em>Ukrainian Botanical Journal</em> 74 (6): 509–520.&nbsp; https://doi.org/10.15407/ukrbotj74.06.509</p>
<p>Wilmotte, A., Van der Auwera, G. &amp; De Wachter, R. (1993) Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium <em>Chlorogloeopsis </em>HTF (<em>Mastigocladus laminosus</em> HTF’) strain PCC75 18, and phylogenetic analysis. <em>FEBS Letters</em> 317: 96–100.&nbsp; https://doi.org/10.1016/0014-5793(93)81499-P</p>
<p>Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. <em>Nucleic Acids Research</em> 31: 3406–3416.</p>