Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-12-03
Page range: 221-233
Abstract views: 60
PDF downloaded: 1

New cyanobacterium Aliterella vladivostokensis sp. nov. (Aliterellaceae, Chroococcidiopsidales), isolated from temperate monsoon climate zone (Vladivostok, Russia)

Laboratory of Botany, Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
Laboratory of Botany, Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
Laboratory of Botany, Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
Laboratory of Botany, Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
Laboratory of Botany, Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
Aliterella coccoid cyanobacteria geography morphology secondary structures taxonomy 16S rRNA 16S–23S ITS rRNA Algae

Abstract

A new coccoid cyanobacterium Aliterella vladivostokensis sp. nov. was described from an urban aerophytic habitat in a temperate monsoon climate (Vladivostok, Russia) using a polyphasic approach. Phylogenetic analyses based on the 16S rRNA gene sequences confirmed that our isolate was a member of the Aliterella genus clade. Aliterella species are hardly distinguishable from each other morphologically and were described from highly contrasting natural and artificial environments with only a few records from several continents. Despite high similarity of morphometric data for A. vladivostokensis and A. antarctica cells and a compensatory base change in the D1–D1′ helix shared by these species; high percent of dissimilarity (11.6±1.3) between their 16S–23S internal transcribed spacer sequences with at least 5 autapomorphic mutations in the D1–D1′ and Box-B helices, and distinct folding patterns of the Box-B helix allowed us to erect a new species.

References

<p>Abdullin, Sh.R. (2011) Effect of illumination on the distribution of phototrophic organisms in the entrance part of the Shul’gan-Tash Cave. <em>Russian Journal of Ecology</em> 42: 249–251. https://doi.org/10.1134/S1067413611030039</p>
<p>Abdullin, Sh.R., Nikulin, V.Yu., Nikulin, A.Yu., Manyakhin, A.Yu., Bagmet, V.B., Suprun, A.R. &amp; Gontcharov, A.A. (2021)<em> Roholtiella mixta</em> <em>sp. nov.</em> (Nostocales, Cyanobacteria): morphology, molecular phylogeny, and carotenoid content. <em>Phycologia</em> 60: 73–82.&nbsp; https://doi.org/10.1080/00318884.2020.1852846</p>
<p>Alvarenga, D.O., Fiore, M.F. &amp; Varani, A.M. (2017) A Metagenomic Approach to Cyanobacterial Genomics. <em>Frontiers in Microbiology</em> 8: 809.&nbsp; https://doi.org/10.3389/fmicb.2017.00809</p>
<p>Becerra-Absalón, I., Johansen, J.R., Osorio-Santos, K. &amp; Montejano, G. (2020) Two new <em>Oculatella</em> (Oculatellaceae, Cyanobacteria) species in soil crusts from tropical semi-arid uplands of México. <em>Fottea</em> 20: 160–170.&nbsp; https://doi.org/10.5507/fot.2020.010</p>
<p>Bohunická, M., Pietrasiak, N., Johansen, J.R., Gómez, E.B., Hauer, T., Gaysina, L.A. &amp; Lukešová, A. <em>Roholtiella</em>, <em>gen. nov.</em> (Nostocales, Cyanobacteria)—a tapering and branching cyanobacteria of the family Nostocaceae. <em>Phytotaxa</em> 197: 84–103.&nbsp; https://doi.org/10.11646/phytotaxa.197.2.2</p>
<p>Bonfield, J.K., Smith, K.F &amp; Staden, R. (1995) A new DNA sequence assembly program. <em>Nucleic Acids Research</em> 23: 4992–4999.&nbsp; https://doi.org/10.1093/nar/23.24.4992</p>
<p>Cellamare, M., Duval, C., Drelin, Y., Djediat, C., Touibi, N., Agogué, H., Leboulanger, C., Ader, M. &amp; Bernard, C. (2018) Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean). <em>FEMS microbiology ecology</em> 94.&nbsp; https://doi.org/10.1093/femsec/fiy108</p>
<p>Cirés, S. &amp; Ballot, A. (2016) A review of the phylogeny, ecology and toxin production of bloom-forming <em>Aphanizomenon</em> spp. and related species within the Nostocales (cyanobacteria). <em>Harmful Algae</em> 54: 21–43.&nbsp; https://doi.org/10.1016/j.hal.2015.09.007</p>
<p>Coelho, C., Mesquita, N., Costa, I., Soares, F., Trovao, J., Freitas, H., Portugal, A. &amp; Tiago, I. (2021) Bacterial and archaeal structural diversity in several biodeterioration patterns on the limestone walls of the Old Cathedral of Coimbra. <em>Microorganisms</em> 9: 709.&nbsp; https://doi.org/10.3390/microorganisms9040709</p>
<p>Czerwik-Marcinkowska, J. &amp; Massalski, A. (2018) Diversity of cyanobacteria on limestone caves. <em>In:</em> Tiwari, A. (Ed.) <em>Cyanobacteria</em>. IntechOpen, London, pp. 137–164.&nbsp; https://doi.org/10.5772/intechopen.79750</p>
<p>Dadheech, P.K., Abed, R.M.M., Mahmoud, H., Mohan, M.K. &amp; Krienitz, L. (2012) Polyphasic characterization of cyanobacteria isolated from desert crusts, and the description of <em>Desertifilum tharense</em> <em>gen. et sp. nov. </em>(Oscillatoriales). <em>Phycologia</em> 51: 260–270.&nbsp; https://doi.org/10.2216/09-51.1</p>
<p>Darriba, D., Taboada, G.L., Doallo, R. &amp; Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. <em>Nature Methods</em> 9: 772–772.&nbsp; https://doi.org/10.1038/nmeth.2109</p>
<p>Darty, K., Denise, A. &amp; Ponty, Y. (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. <em>Bioinformatics</em> 25: 1974–1975.&nbsp; https://doi.org/10.1093/bioinformatics/btp250</p>
<p>Duan, Y.L., Wu, F.S., He, D.P., Gu, J.D., Feng, H.Y., Chen, T., Liu, G.X. &amp; Wang, W.F. (2021) Bacterial and fungal communities in the sandstone biofilms of two famous Buddhist grottoes in China. <em>International Biodeterioration &amp; Biodegradation</em> 163: 105267.&nbsp; https://doi.org/10.1016/j.ibiod.2021.105267</p>
<p>Echt, C.S., Erdahl, L.A. &amp; McCoy, T.J. (1992) Genetic segregation of random amplified polymorphic DNA in diploid cultivated alfalfa. <em>Genome</em> 35: 84–87.&nbsp; https://doi.org/10.1139/g92-014</p>
<p>Erwin, P.M. &amp; Thacker, R.W. (2008) Cryptic diversity of the symbiotic cyanobacterium <em>Synechococcus spongiarum</em> among sponge hosts. <em>Molecular Ecology</em> 17: 2937–2947. https://doi.org/10.1111/j.1365-294X.2008.03808.x</p>
<p>Galtier, N., Gouy, M. &amp; Gautier, C. (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. <em>Computer applications in the biosciences: CABIOS</em> 12: 543–548.&nbsp; https://doi.org/10.1093/bioinformatics/12.6.543</p>
<p>González-Gómez, W.S., Quintana, P., Gómez-Cornelio, S., García-Solis, C., Sierra-Fernandez, A., Ortega-Morales, O. &amp; De la Rosa-García, S.C. (2018) Calcium oxalates in biofilms on limestone walls of Maya buildings in Chichén Itzá, Mexico. <em>Environmental Earth Sciences</em> 77: 230. https://doi.org/10.1007/s12665-018-7406-6</p>
<p>Harke, M.J., Steffen, M.M., Gobler, C.J., Otten, T.G., Wilhelm, S.W., Wood, S.A. &amp; Paerl, H.W. (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, <em>Microcystis</em> spp. <em>Harmful Algae</em> 54: 4–20.&nbsp; https://doi.org/10.1016/j.hal.2015.12.007</p>
<p>Hauer, T., Mühlsteinová, R., Bohunická, M., Kaštovský, J. &amp; Mareš, J. (2015) Diversity of cyanobacteria on rock surfaces. <em>Biodiversity and Conservation</em> 24: 759–779.&nbsp; https://doi.org/10.1007/s10531-015-0890-z</p>
<p>Huelsenbeck, J.P. &amp; Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. <em>Bioinformatics </em>17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754</p>
<p>Iteman, I., Rippka, R., de Marsac, N.T. &amp; Herdman, M. (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. <em>Microbiology</em> 146: 1275–1286.&nbsp; https://doi.org/10.1099/00221287-146-6-1275</p>
<p>Johansen, J.R., Bohunická, M., Lukešová, A., Hrčková, K., Vaccarino, M.A. &amp; Chesarino, N.M. (2014) Morphological and molecular characterization within 26 strains of the genus <em>Cylindrospermum</em> (Nostocaceae, Cyanobacteria), with description of three new species. <em>Journal of Phycology</em> 50: 187–202.&nbsp; https://doi.org/10.1111/jpy.12150</p>
<p>Jung, P., Mikhailyuk, T., Emrich, D., Baumann, K., Dultz, S. &amp; Büdel, B. (2020) Shifting Boundaries: Ecological and Geographical Range extension Based on Three New Species in the Cyanobacterial Genera <em>Cyanocohniella</em>, <em>Oculatella</em>, and, <em>Aliterella</em>. <em>Journal of Phycology</em> 56: 1216–1231.&nbsp; https://doi.org/10.1111/jpy.13025</p>
<p>Kiselev, K.V., Dubrovina, A.S. &amp; Tyunin, A.P. (2015) The methylation status of plant genomic DNA influences PCR efficiency. <em>Journal of Plant Physiology</em> 175: 59–67.&nbsp; https://doi.org/10.1016/j.jplph.2014.10.017</p>
<p>Komárek, J., Johansen, J.R., Šmarda, J. &amp; Strunecký, O. (2020) Phylogeny and taxonomy of <em>Synechococcus</em>-like cyanobacteria. <em>Fottea</em> 20: 171–191.&nbsp; https://doi.org/10.5507/fot.2020.006</p>
<p>Komárek, J., Kováčik, Ľ., Elster, J. &amp; Komárek, O. (2012) Cyanobacterial diversity of Petuniabukta, Billefjorden, central Spitsbergen. <em>Polish Polar Research</em> 33: 347–368. https://doi.org/10.2478/V10183-012-0024-1</p>
<p>Köppen, W. (1936) Das geographische System der Klimate. <em>In:</em> Köppen, W. &amp; Geiger, R. (Eds.) <em>Handbuch der Klimatologie</em> <em>Bd. 1: Teil C</em>. Verlag von Gebrüder Borntraeger, Berlin, pp. 1–44.</p>
<p>Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. &amp; Stamatakis, A. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. <em>Bioinformatics</em> 35: 4453–4455.&nbsp; https://doi.org/10.1093/bioinformatics/btz305</p>
<p>Kumar, S., Stecher, G. &amp; Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. <em>Molecular Biology and Evolution</em> 33: 1870–1874.&nbsp; https://doi.org/10.1093/molbev/msw054</p>
<p>Lane, D.J. (1991) 16S/23S rRNA sequencing.<em> In: </em>Stackebrandt, E. &amp; Goodfellow, M. (Eds.)<em> Nucleic acid techniques in bacterial systematics</em>. John Wiley and Sons, New York, pp. 115–175.</p>
<p>Lee, N.-J., Seo, Y., Ki, J.-S. &amp; Lee, O.-M. (2020) Morphology and molecular description of <em>Wilmottia koreana sp. nov.</em> (Oscillatoriales, Cyanobacteria) isolated from the Republic of Korea. <em>Phytotaxa</em> 447: 237–251.&nbsp; https://doi.org/10.11646/phytotaxa.447.4.2</p>
<p>Li, Y., Cha, Q.-Q., Dang, Y.-R., Chen, X.-L., Wang, M., McMinn, A., Espina, G., Zhang, Y.-Z., Blamey, J.M. &amp; Qin, Q.-L. (2019) Reconstruction of the Functional Ecosystem in the High Light, Low Temperature Union Glacier Region, Antarctica. <em>Frontiers in Microbiology</em> 10: 2408.&nbsp; https://doi.org/10.3389/fmicb.2019.02408</p>
<p>McFadden, G.I. &amp; Melkonian, M. (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. <em>Phycologia</em> 25: 551–557.&nbsp; https://doi.org/10.2216/i0031-8884-25-4-551.1</p>
<p>Moissl, C., Osman, S., La Duc, M.T., Dekas, A., Brodie, E., DeSantis, T., Desantis, T. &amp; Venkateswaran, K. (2007) Molecular bacterial community analysis of clean rooms where spacecraft are assembled. <em>FEMS microbiology ecology</em> 61: 509–521.&nbsp; https://doi.org/10.1111/j.1574-6941.2007.00360.x</p>
<p>Mühlsteinová, R. &amp; Hauer, T. (2013) Pilot survey of cyanobacterial diversity from the neighborhood of San Gerardo de Rivas, Costa Rica with a brief summary of current knowledge of terrestrial cyanobacteria in Central America. <em>Brazilian Journal of Botany</em> 36: 299–307.&nbsp; https://doi.org/10.1007/s40415-013-0030-5</p>
<p>Nägeli, C. (1849) <em>Gattungen einzelliger Algen physiologisch und systematisch bearbeitet</em>. Friedrich Schulthess, Zürich. 139 pp.&nbsp; https://doi.org/10.5962/bhl.title.6805</p>
<p>Ortega-Morales, O., Montero-Muñoz, J.L., Baptista Neto, J.A., Beech, I.B., Sunner, J. &amp; Gaylarde, C. (2019) Deterioration and microbial colonization of cultural heritage stone buildings in polluted and unpolluted tropical and subtropical climates: A meta-analysis. <em>International Biodeterioration &amp; Biodegradation</em> 143: 104734.&nbsp; https://doi.org/10.1016/j.ibiod.2019.104734</p>
<p>Osorio-Santos, K., Pietrasiak, N., Bohunická, M., Miscoe, L.H., Kováčik, L., Martin, M.P. &amp; Johansen, J.R. (2014) Seven new species of <em>Oculatella</em> (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. <em>European Journal of Phycology</em> 49: 450–470.&nbsp; https://doi.org/10.1080/09670262.2014.976843</p>
<p>Panwar, P., Allen, M.A., Williams, T.J., Hancock, A.M., Brazendale, S., Bevington, J., Roux, S., Paez-Espino, D., Nayfach, S., Berg, M., Schulz, F., Chen, I.-M.A., Huntemann, M., Shapiro, N., Kyrpides, N.C., Woyke, T., Eloe-Fadrosh, E.A. &amp; Cavicchioli, R. (2020) Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community. <em>Microbiome</em> 8: 116.&nbsp; https://doi.org/10.1186/s40168-020-00889-8</p>
<p>Perkerson III, R.B., Johansen, J.R., Kovácik, L., Brand, J., Kaštovský, J. &amp; Casamatta, D.A. (2011) A unique Pseudanabaenalean (Cyanobacteria) genus <em>Nodosilinea</em> <em>gen. nov. </em>based on morphological and molecular data. <em>Journal of Phycology</em> 47: 1397–1412.&nbsp; https://doi.org/10.1111/j.1529-8817.2011.01077.x</p>
<p>Pietrasiak, N., Mühlsteinová, R., Siegesmund, M.A. &amp; Johansen, J.R. (2014) Phylogenetic placement of <em>Symplocastrum</em> (Phormidiaceae, Cyanophyceae) with a new combination <em>S. californicum</em> and two new species: <em>S. flechtnerae </em>and<em> S. torsivum</em>. <em>Phycologia</em> 53: 529–541.&nbsp; https://doi.org/10.2216/14-029.1</p>
<p>Pinheiro, A.C., Mesquita, N., Trovão, J., Soares, F., Tiago, I., Coelho, C., de Carvalho, H.P., Gil, F., Catarino, L., Piñar, G. &amp; Portugal, A. (2019) Limestone biodeterioration: A review on the Portuguese cultural heritage scenario. <em>Journal of Cultural Heritage</em> 36: 275–285.&nbsp; https://doi.org/10.1016/j.culher.2018.07.008</p>
<p>Ribeiro, K.F., Duarte, L. &amp; Crossetti, L.O. (2018) Everything is not everywhere: a tale on the biogeography of cyanobacteria. <em>Hydrobiologia</em> 820: 23–48.&nbsp; https://doi.org/10.1007/s10750-018-3669-x</p>
<p>Rigonato, J., Gama, W.A., Alvarenga, D.O., Branco, L.H.Z., Brandini, F.P., Genuário, D.B. &amp; Fiore, M.F. (2016) <em>Aliterella atlantica</em> <em>gen. nov., sp. nov.</em>, and <em>Aliterella antarctica</em> <em>sp. nov.</em>, novel members of coccoid Cyanobacteria. <em>International Journal of Systematic and Evolutionary Microbiology</em> 66: 2853–2861.&nbsp; https://doi.org/10.1099/ijsem.0.001066</p>
<p>Rippka, R., Waterbury, J. &amp; Cohen-Bazire, G. (1974) A cyanobacterium which lacks thylakoids. <em>Archives of Microbiology</em> 100: 419–436.&nbsp; https://doi.org/10.1007/BF00446333</p>
<p>Saw, J.H.W., Schatz, M., Brown, M.V., Kunkel, D.D., Foster, J.S., Shick, H., Christensen, S., Hoa, S., Wan, X. &amp; Donachie, S.P. (2013) Cultivation and Complete Genome Sequencing of <em>Gloeobacter kilaueensis</em> <em>sp. nov.</em>, from a Lava Cave in Kîlauea Caldera, Hawai’i. <em>PLOS ONE</em> 8: e76376.&nbsp; https://doi.org/10.1371/journal.pone.0076376</p>
<p>Shorthouse, D.P. (2010) SimpleMappr, an online tool to produce publication-quality point maps. Available from: https://www.simplemappr.net/ (Accessed 5 March 2021)</p>
<p>Stamatakis, A., Hoover, P. &amp; Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML Web servers. <em>Systematic Biology</em> 57: 758–771.&nbsp; https://doi.org/10.1080/10635150802429642</p>
<p>Tripathi, S.N., Chung, I.K. &amp; Lee, J.A. (2007) Diversity and characteristics of terrestrial cyanobacteria near gimhae city, Korea. <em>Journal of Plant Biology</em> 50: 50–59.&nbsp; https://doi.org/10.1007/BF03030600</p>
<p>Turner, S., Pryer, K.M., Miao, V.P. &amp; Palmer, J.D. (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. <em>The Journal of Eukaryotic Microbiology</em> 46: 327–338.&nbsp; https://doi.org/10.1111/j.1550-7408.1999.tb04612.x</p>
<p>Villa, F. &amp; Cappitelli, F. (2019) The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. <em>Microorganisms</em> 7: 380.&nbsp; https://doi.org/10.3390/microorganisms7100380</p>
<p>Wang, Y., Cai, F., Jia, N. &amp; Li, R. (2019) Description of a novel coccoid cyanobacterial genus and species <em>Sinocapsa zengkensis gen. nov. sp. nov. </em>(Sinocapsaceae, incertae sedis), with taxonomic notes on genera in Chroococcidiopsidales. <em>Phytotaxa</em> 409: 146–160.&nbsp; https://doi.org/10.11646/phytotaxa.409.3.3</p>
<p>Wilkins, D., Yau, S., Williams, T.J., Allen, M.A., Brown, M.V., DeMaere, M.Z., Lauro, F.M. &amp; Cavicchioli, R. (2013) Key microbial drivers in Antarctic aquatic environments. <em>FEMS Microbiology Reviews</em> 37: 303–335.&nbsp; https://doi.org/10.1111/1574-6976.12007</p>
<p>Zammit, G., Billi, D. &amp; Albertano, P. (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) <em>gen. et sp. nov.</em>: a cytomorphological and molecular description. <em>European Journal of Phycology</em> 47: 341–354.&nbsp; https://doi.org/10.1080/09670262.2012.717106</p>
<p>Zhang, Q., Zheng, L., Li, T., Li, R. &amp; Song, L. (2018) <em>Aliterella shaanxiensis</em> (Aliterellaceae), a new coccoid cyanobacterial species from China. <em>Phytotaxa</em> 374: 211–220.&nbsp; https://doi.org/10.11646/phytotaxa.374.3.2</p>
<p>Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. <em>Nucleic Acids Research</em> 31: 3406–3415.&nbsp; https://doi.org/10.1093/nar/gkg595</p>