Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-12-03
Page range: 221-233
Abstract views: 285
PDF downloaded: 2

New cyanobacterium Aliterella vladivostokensis sp. nov. (Aliterellaceae, Chroococcidiopsidales), isolated from temperate monsoon climate zone (Vladivostok, Russia)

Laboratory of Botany, Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
Laboratory of Botany, Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
Laboratory of Botany, Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
Laboratory of Botany, Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
Laboratory of Botany, Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
Aliterella coccoid cyanobacteria geography morphology secondary structures taxonomy 16S rRNA 16S–23S ITS rRNA Algae

Abstract

A new coccoid cyanobacterium Aliterella vladivostokensis sp. nov. was described from an urban aerophytic habitat in a temperate monsoon climate (Vladivostok, Russia) using a polyphasic approach. Phylogenetic analyses based on the 16S rRNA gene sequences confirmed that our isolate was a member of the Aliterella genus clade. Aliterella species are hardly distinguishable from each other morphologically and were described from highly contrasting natural and artificial environments with only a few records from several continents. Despite high similarity of morphometric data for A. vladivostokensis and A. antarctica cells and a compensatory base change in the D1–D1′ helix shared by these species; high percent of dissimilarity (11.6±1.3) between their 16S–23S internal transcribed spacer sequences with at least 5 autapomorphic mutations in the D1–D1′ and Box-B helices, and distinct folding patterns of the Box-B helix allowed us to erect a new species.

References

Abdullin, Sh.R. (2011) Effect of illumination on the distribution of phototrophic organisms in the entrance part of the Shul’gan-Tash Cave. Russian Journal of Ecology 42: 249–251. https://doi.org/10.1134/S1067413611030039

Abdullin, Sh.R., Nikulin, V.Yu., Nikulin, A.Yu., Manyakhin, A.Yu., Bagmet, V.B., Suprun, A.R. & Gontcharov, A.A. (2021) Roholtiella mixta sp. nov. (Nostocales, Cyanobacteria): morphology, molecular phylogeny, and carotenoid content. Phycologia 60: 73–82. https://doi.org/10.1080/00318884.2020.1852846

Alvarenga, D.O., Fiore, M.F. & Varani, A.M. (2017) A Metagenomic Approach to Cyanobacterial Genomics. Frontiers in Microbiology 8: 809. https://doi.org/10.3389/fmicb.2017.00809

Becerra-Absalón, I., Johansen, J.R., Osorio-Santos, K. & Montejano, G. (2020) Two new Oculatella (Oculatellaceae, Cyanobacteria) species in soil crusts from tropical semi-arid uplands of México. Fottea 20: 160–170. https://doi.org/10.5507/fot.2020.010

Bohunická, M., Pietrasiak, N., Johansen, J.R., Gómez, E.B., Hauer, T., Gaysina, L.A. & Lukešová, A. Roholtiella, gen. nov. (Nostocales, Cyanobacteria)—a tapering and branching cyanobacteria of the family Nostocaceae. Phytotaxa 197: 84–103. https://doi.org/10.11646/phytotaxa.197.2.2

Bonfield, J.K., Smith, K.F & Staden, R. (1995) A new DNA sequence assembly program. Nucleic Acids Research 23: 4992–4999. https://doi.org/10.1093/nar/23.24.4992

Cellamare, M., Duval, C., Drelin, Y., Djediat, C., Touibi, N., Agogué, H., Leboulanger, C., Ader, M. & Bernard, C. (2018) Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean). FEMS microbiology ecology 94. https://doi.org/10.1093/femsec/fiy108

Cirés, S. & Ballot, A. (2016) A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 54: 21–43. https://doi.org/10.1016/j.hal.2015.09.007

Coelho, C., Mesquita, N., Costa, I., Soares, F., Trovao, J., Freitas, H., Portugal, A. & Tiago, I. (2021) Bacterial and archaeal structural diversity in several biodeterioration patterns on the limestone walls of the Old Cathedral of Coimbra. Microorganisms 9: 709. https://doi.org/10.3390/microorganisms9040709

Czerwik-Marcinkowska, J. & Massalski, A. (2018) Diversity of cyanobacteria on limestone caves. In: Tiwari, A. (Ed.) Cyanobacteria. IntechOpen, London, pp. 137–164. https://doi.org/10.5772/intechopen.79750

Dadheech, P.K., Abed, R.M.M., Mahmoud, H., Mohan, M.K. & Krienitz, L. (2012) Polyphasic characterization of cyanobacteria isolated from desert crusts, and the description of Desertifilum tharense gen. et sp. nov. (Oscillatoriales). Phycologia 51: 260–270. https://doi.org/10.2216/09-51.1

Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772–772. https://doi.org/10.1038/nmeth.2109

Darty, K., Denise, A. & Ponty, Y. (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25: 1974–1975. https://doi.org/10.1093/bioinformatics/btp250

Duan, Y.L., Wu, F.S., He, D.P., Gu, J.D., Feng, H.Y., Chen, T., Liu, G.X. & Wang, W.F. (2021) Bacterial and fungal communities in the sandstone biofilms of two famous Buddhist grottoes in China. International Biodeterioration & Biodegradation 163: 105267. https://doi.org/10.1016/j.ibiod.2021.105267

Echt, C.S., Erdahl, L.A. & McCoy, T.J. (1992) Genetic segregation of random amplified polymorphic DNA in diploid cultivated alfalfa. Genome 35: 84–87. https://doi.org/10.1139/g92-014

Erwin, P.M. & Thacker, R.W. (2008) Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Molecular Ecology 17: 2937–2947. https://doi.org/10.1111/j.1365-294X.2008.03808.x

Galtier, N., Gouy, M. & Gautier, C. (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Computer applications in the biosciences: CABIOS 12: 543–548. https://doi.org/10.1093/bioinformatics/12.6.543

González-Gómez, W.S., Quintana, P., Gómez-Cornelio, S., García-Solis, C., Sierra-Fernandez, A., Ortega-Morales, O. & De la Rosa-García, S.C. (2018) Calcium oxalates in biofilms on limestone walls of Maya buildings in Chichén Itzá, Mexico. Environmental Earth Sciences 77: 230. https://doi.org/10.1007/s12665-018-7406-6

Harke, M.J., Steffen, M.M., Gobler, C.J., Otten, T.G., Wilhelm, S.W., Wood, S.A. & Paerl, H.W. (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54: 4–20. https://doi.org/10.1016/j.hal.2015.12.007

Hauer, T., Mühlsteinová, R., Bohunická, M., Kaštovský, J. & Mareš, J. (2015) Diversity of cyanobacteria on rock surfaces. Biodiversity and Conservation 24: 759–779. https://doi.org/10.1007/s10531-015-0890-z

Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754

Iteman, I., Rippka, R., de Marsac, N.T. & Herdman, M. (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 146: 1275–1286. https://doi.org/10.1099/00221287-146-6-1275

Johansen, J.R., Bohunická, M., Lukešová, A., Hr?ková, K., Vaccarino, M.A. & Chesarino, N.M. (2014) Morphological and molecular characterization within 26 strains of the genus Cylindrospermum (Nostocaceae, Cyanobacteria), with description of three new species. Journal of Phycology 50: 187–202. https://doi.org/10.1111/jpy.12150

Jung, P., Mikhailyuk, T., Emrich, D., Baumann, K., Dultz, S. & Büdel, B. (2020) Shifting Boundaries: Ecological and Geographical Range extension Based on Three New Species in the Cyanobacterial Genera Cyanocohniella, Oculatella, and, Aliterella. Journal of Phycology 56: 1216–1231. https://doi.org/10.1111/jpy.13025

Kiselev, K.V., Dubrovina, A.S. & Tyunin, A.P. (2015) The methylation status of plant genomic DNA influences PCR efficiency. Journal of Plant Physiology 175: 59–67. https://doi.org/10.1016/j.jplph.2014.10.017

Komárek, J., Johansen, J.R., Šmarda, J. & Strunecký, O. (2020) Phylogeny and taxonomy of Synechococcus-like cyanobacteria. Fottea 20: 171–191. https://doi.org/10.5507/fot.2020.006

Komárek, J., Ková?ik, ?., Elster, J. & Komárek, O. (2012) Cyanobacterial diversity of Petuniabukta, Billefjorden, central Spitsbergen. Polish Polar Research 33: 347–368. https://doi.org/10.2478/V10183-012-0024-1

Köppen, W. (1936) Das geographische System der Klimate. In: Köppen, W. & Geiger, R. (Eds.) Handbuch der Klimatologie Bd. 1: Teil C. Verlag von Gebrüder Borntraeger, Berlin, pp. 1–44.

Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35: 4453–4455. https://doi.org/10.1093/bioinformatics/btz305

Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/msw054

Lane, D.J. (1991) 16S/23S rRNA sequencing. In: Stackebrandt, E. & Goodfellow, M. (Eds.) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, pp. 115–175.

Lee, N.-J., Seo, Y., Ki, J.-S. & Lee, O.-M. (2020) Morphology and molecular description of Wilmottia koreana sp. nov. (Oscillatoriales, Cyanobacteria) isolated from the Republic of Korea. Phytotaxa 447: 237–251. https://doi.org/10.11646/phytotaxa.447.4.2

Li, Y., Cha, Q.-Q., Dang, Y.-R., Chen, X.-L., Wang, M., McMinn, A., Espina, G., Zhang, Y.-Z., Blamey, J.M. & Qin, Q.-L. (2019) Reconstruction of the Functional Ecosystem in the High Light, Low Temperature Union Glacier Region, Antarctica. Frontiers in Microbiology 10: 2408. https://doi.org/10.3389/fmicb.2019.02408

McFadden, G.I. & Melkonian, M. (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25: 551–557. https://doi.org/10.2216/i0031-8884-25-4-551.1

Moissl, C., Osman, S., La Duc, M.T., Dekas, A., Brodie, E., DeSantis, T., Desantis, T. & Venkateswaran, K. (2007) Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS microbiology ecology 61: 509–521. https://doi.org/10.1111/j.1574-6941.2007.00360.x

Mühlsteinová, R. & Hauer, T. (2013) Pilot survey of cyanobacterial diversity from the neighborhood of San Gerardo de Rivas, Costa Rica with a brief summary of current knowledge of terrestrial cyanobacteria in Central America. Brazilian Journal of Botany 36: 299–307. https://doi.org/10.1007/s40415-013-0030-5

Nägeli, C. (1849) Gattungen einzelliger Algen physiologisch und systematisch bearbeitet. Friedrich Schulthess, Zürich. 139 pp. https://doi.org/10.5962/bhl.title.6805

Ortega-Morales, O., Montero-Muñoz, J.L., Baptista Neto, J.A., Beech, I.B., Sunner, J. & Gaylarde, C. (2019) Deterioration and microbial colonization of cultural heritage stone buildings in polluted and unpolluted tropical and subtropical climates: A meta-analysis. International Biodeterioration & Biodegradation 143: 104734. https://doi.org/10.1016/j.ibiod.2019.104734

Osorio-Santos, K., Pietrasiak, N., Bohunická, M., Miscoe, L.H., Ková?ik, L., Martin, M.P. & Johansen, J.R. (2014) Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. European Journal of Phycology 49: 450–470. https://doi.org/10.1080/09670262.2014.976843

Panwar, P., Allen, M.A., Williams, T.J., Hancock, A.M., Brazendale, S., Bevington, J., Roux, S., Paez-Espino, D., Nayfach, S., Berg, M., Schulz, F., Chen, I.-M.A., Huntemann, M., Shapiro, N., Kyrpides, N.C., Woyke, T., Eloe-Fadrosh, E.A. & Cavicchioli, R. (2020) Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community. Microbiome 8: 116. https://doi.org/10.1186/s40168-020-00889-8

Perkerson III, R.B., Johansen, J.R., Kovácik, L., Brand, J., Kaštovský, J. & Casamatta, D.A. (2011) A unique Pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. Journal of Phycology 47: 1397–1412. https://doi.org/10.1111/j.1529-8817.2011.01077.x

Pietrasiak, N., Mühlsteinová, R., Siegesmund, M.A. & Johansen, J.R. (2014) Phylogenetic placement of Symplocastrum (Phormidiaceae, Cyanophyceae) with a new combination S. californicum and two new species: S. flechtnerae and S. torsivum. Phycologia 53: 529–541. https://doi.org/10.2216/14-029.1

Pinheiro, A.C., Mesquita, N., Trovão, J., Soares, F., Tiago, I., Coelho, C., de Carvalho, H.P., Gil, F., Catarino, L., Piñar, G. & Portugal, A. (2019) Limestone biodeterioration: A review on the Portuguese cultural heritage scenario. Journal of Cultural Heritage 36: 275–285. https://doi.org/10.1016/j.culher.2018.07.008

Ribeiro, K.F., Duarte, L. & Crossetti, L.O. (2018) Everything is not everywhere: a tale on the biogeography of cyanobacteria. Hydrobiologia 820: 23–48. https://doi.org/10.1007/s10750-018-3669-x

Rigonato, J., Gama, W.A., Alvarenga, D.O., Branco, L.H.Z., Brandini, F.P., Genuário, D.B. & Fiore, M.F. (2016) Aliterella atlantica gen. nov., sp. nov., and Aliterella antarctica sp. nov., novel members of coccoid Cyanobacteria. International Journal of Systematic and Evolutionary Microbiology 66: 2853–2861. https://doi.org/10.1099/ijsem.0.001066

Rippka, R., Waterbury, J. & Cohen-Bazire, G. (1974) A cyanobacterium which lacks thylakoids. Archives of Microbiology 100: 419–436. https://doi.org/10.1007/BF00446333

Saw, J.H.W., Schatz, M., Brown, M.V., Kunkel, D.D., Foster, J.S., Shick, H., Christensen, S., Hoa, S., Wan, X. & Donachie, S.P. (2013) Cultivation and Complete Genome Sequencing of Gloeobacter kilaueensis sp. nov., from a Lava Cave in Kîlauea Caldera, Hawai’i. PLOS ONE 8: e76376. https://doi.org/10.1371/journal.pone.0076376

Shorthouse, D.P. (2010) SimpleMappr, an online tool to produce publication-quality point maps. Available from: https://www.simplemappr.net/ (Accessed 5 March 2021)

Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology 57: 758–771. https://doi.org/10.1080/10635150802429642

Tripathi, S.N., Chung, I.K. & Lee, J.A. (2007) Diversity and characteristics of terrestrial cyanobacteria near gimhae city, Korea. Journal of Plant Biology 50: 50–59. https://doi.org/10.1007/BF03030600

Turner, S., Pryer, K.M., Miao, V.P. & Palmer, J.D. (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. The Journal of Eukaryotic Microbiology 46: 327–338. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x

Villa, F. & Cappitelli, F. (2019) The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. Microorganisms 7: 380. https://doi.org/10.3390/microorganisms7100380

Wang, Y., Cai, F., Jia, N. & Li, R. (2019) Description of a novel coccoid cyanobacterial genus and species Sinocapsa zengkensis gen. nov. sp. nov. (Sinocapsaceae, incertae sedis), with taxonomic notes on genera in Chroococcidiopsidales. Phytotaxa 409: 146–160. https://doi.org/10.11646/phytotaxa.409.3.3

Wilkins, D., Yau, S., Williams, T.J., Allen, M.A., Brown, M.V., DeMaere, M.Z., Lauro, F.M. & Cavicchioli, R. (2013) Key microbial drivers in Antarctic aquatic environments. FEMS Microbiology Reviews 37: 303–335. https://doi.org/10.1111/1574-6976.12007

Zammit, G., Billi, D. & Albertano, P. (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: a cytomorphological and molecular description. European Journal of Phycology 47: 341–354. https://doi.org/10.1080/09670262.2012.717106

Zhang, Q., Zheng, L., Li, T., Li, R. & Song, L. (2018) Aliterella shaanxiensis (Aliterellaceae), a new coccoid cyanobacterial species from China. Phytotaxa 374: 211–220. https://doi.org/10.11646/phytotaxa.374.3.2

Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31: 3406–3415. https://doi.org/10.1093/nar/gkg595

How to Cite

Abdullin, S.R., Nikulin, A.Y., Bagmet, V.B., Nikulin, V.Y. & Gontcharov, A.A. (2021)

New cyanobacterium Aliterella vladivostokensis sp. nov. (Aliterellaceae, Chroococcidiopsidales), isolated from temperate monsoon climate zone (Vladivostok, Russia)

. Phytotaxa 527 (3): 221–233. https://doi.org/10.11646/phytotaxa.527.3.7