Abstract
A new coccoid cyanobacterium Aliterella vladivostokensis sp. nov. was described from an urban aerophytic habitat in a temperate monsoon climate (Vladivostok, Russia) using a polyphasic approach. Phylogenetic analyses based on the 16S rRNA gene sequences confirmed that our isolate was a member of the Aliterella genus clade. Aliterella species are hardly distinguishable from each other morphologically and were described from highly contrasting natural and artificial environments with only a few records from several continents. Despite high similarity of morphometric data for A. vladivostokensis and A. antarctica cells and a compensatory base change in the D1–D1′ helix shared by these species; high percent of dissimilarity (11.6±1.3) between their 16S–23S internal transcribed spacer sequences with at least 5 autapomorphic mutations in the D1–D1′ and Box-B helices, and distinct folding patterns of the Box-B helix allowed us to erect a new species.
References
<p>Abdullin, Sh.R., Nikulin, V.Yu., Nikulin, A.Yu., Manyakhin, A.Yu., Bagmet, V.B., Suprun, A.R. & Gontcharov, A.A. (2021)<em> Roholtiella mixta</em> <em>sp. nov.</em> (Nostocales, Cyanobacteria): morphology, molecular phylogeny, and carotenoid content. <em>Phycologia</em> 60: 73–82. https://doi.org/10.1080/00318884.2020.1852846</p>
<p>Alvarenga, D.O., Fiore, M.F. & Varani, A.M. (2017) A Metagenomic Approach to Cyanobacterial Genomics. <em>Frontiers in Microbiology</em> 8: 809. https://doi.org/10.3389/fmicb.2017.00809</p>
<p>Becerra-Absalón, I., Johansen, J.R., Osorio-Santos, K. & Montejano, G. (2020) Two new <em>Oculatella</em> (Oculatellaceae, Cyanobacteria) species in soil crusts from tropical semi-arid uplands of México. <em>Fottea</em> 20: 160–170. https://doi.org/10.5507/fot.2020.010</p>
<p>Bohunická, M., Pietrasiak, N., Johansen, J.R., Gómez, E.B., Hauer, T., Gaysina, L.A. & Lukešová, A. <em>Roholtiella</em>, <em>gen. nov.</em> (Nostocales, Cyanobacteria)—a tapering and branching cyanobacteria of the family Nostocaceae. <em>Phytotaxa</em> 197: 84–103. https://doi.org/10.11646/phytotaxa.197.2.2</p>
<p>Bonfield, J.K., Smith, K.F & Staden, R. (1995) A new DNA sequence assembly program. <em>Nucleic Acids Research</em> 23: 4992–4999. https://doi.org/10.1093/nar/23.24.4992</p>
<p>Cellamare, M., Duval, C., Drelin, Y., Djediat, C., Touibi, N., Agogué, H., Leboulanger, C., Ader, M. & Bernard, C. (2018) Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean). <em>FEMS microbiology ecology</em> 94. https://doi.org/10.1093/femsec/fiy108</p>
<p>Cirés, S. & Ballot, A. (2016) A review of the phylogeny, ecology and toxin production of bloom-forming <em>Aphanizomenon</em> spp. and related species within the Nostocales (cyanobacteria). <em>Harmful Algae</em> 54: 21–43. https://doi.org/10.1016/j.hal.2015.09.007</p>
<p>Coelho, C., Mesquita, N., Costa, I., Soares, F., Trovao, J., Freitas, H., Portugal, A. & Tiago, I. (2021) Bacterial and archaeal structural diversity in several biodeterioration patterns on the limestone walls of the Old Cathedral of Coimbra. <em>Microorganisms</em> 9: 709. https://doi.org/10.3390/microorganisms9040709</p>
<p>Czerwik-Marcinkowska, J. & Massalski, A. (2018) Diversity of cyanobacteria on limestone caves. <em>In:</em> Tiwari, A. (Ed.) <em>Cyanobacteria</em>. IntechOpen, London, pp. 137–164. https://doi.org/10.5772/intechopen.79750</p>
<p>Dadheech, P.K., Abed, R.M.M., Mahmoud, H., Mohan, M.K. & Krienitz, L. (2012) Polyphasic characterization of cyanobacteria isolated from desert crusts, and the description of <em>Desertifilum tharense</em> <em>gen. et sp. nov. </em>(Oscillatoriales). <em>Phycologia</em> 51: 260–270. https://doi.org/10.2216/09-51.1</p>
<p>Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. <em>Nature Methods</em> 9: 772–772. https://doi.org/10.1038/nmeth.2109</p>
<p>Darty, K., Denise, A. & Ponty, Y. (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. <em>Bioinformatics</em> 25: 1974–1975. https://doi.org/10.1093/bioinformatics/btp250</p>
<p>Duan, Y.L., Wu, F.S., He, D.P., Gu, J.D., Feng, H.Y., Chen, T., Liu, G.X. & Wang, W.F. (2021) Bacterial and fungal communities in the sandstone biofilms of two famous Buddhist grottoes in China. <em>International Biodeterioration & Biodegradation</em> 163: 105267. https://doi.org/10.1016/j.ibiod.2021.105267</p>
<p>Echt, C.S., Erdahl, L.A. & McCoy, T.J. (1992) Genetic segregation of random amplified polymorphic DNA in diploid cultivated alfalfa. <em>Genome</em> 35: 84–87. https://doi.org/10.1139/g92-014</p>
<p>Erwin, P.M. & Thacker, R.W. (2008) Cryptic diversity of the symbiotic cyanobacterium <em>Synechococcus spongiarum</em> among sponge hosts. <em>Molecular Ecology</em> 17: 2937–2947. https://doi.org/10.1111/j.1365-294X.2008.03808.x</p>
<p>Galtier, N., Gouy, M. & Gautier, C. (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. <em>Computer applications in the biosciences: CABIOS</em> 12: 543–548. https://doi.org/10.1093/bioinformatics/12.6.543</p>
<p>González-Gómez, W.S., Quintana, P., Gómez-Cornelio, S., García-Solis, C., Sierra-Fernandez, A., Ortega-Morales, O. & De la Rosa-García, S.C. (2018) Calcium oxalates in biofilms on limestone walls of Maya buildings in Chichén Itzá, Mexico. <em>Environmental Earth Sciences</em> 77: 230. https://doi.org/10.1007/s12665-018-7406-6</p>
<p>Harke, M.J., Steffen, M.M., Gobler, C.J., Otten, T.G., Wilhelm, S.W., Wood, S.A. & Paerl, H.W. (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, <em>Microcystis</em> spp. <em>Harmful Algae</em> 54: 4–20. https://doi.org/10.1016/j.hal.2015.12.007</p>
<p>Hauer, T., Mühlsteinová, R., Bohunická, M., Kaštovský, J. & Mareš, J. (2015) Diversity of cyanobacteria on rock surfaces. <em>Biodiversity and Conservation</em> 24: 759–779. https://doi.org/10.1007/s10531-015-0890-z</p>
<p>Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. <em>Bioinformatics </em>17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754</p>
<p>Iteman, I., Rippka, R., de Marsac, N.T. & Herdman, M. (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. <em>Microbiology</em> 146: 1275–1286. https://doi.org/10.1099/00221287-146-6-1275</p>
<p>Johansen, J.R., Bohunická, M., Lukešová, A., Hrčková, K., Vaccarino, M.A. & Chesarino, N.M. (2014) Morphological and molecular characterization within 26 strains of the genus <em>Cylindrospermum</em> (Nostocaceae, Cyanobacteria), with description of three new species. <em>Journal of Phycology</em> 50: 187–202. https://doi.org/10.1111/jpy.12150</p>
<p>Jung, P., Mikhailyuk, T., Emrich, D., Baumann, K., Dultz, S. & Büdel, B. (2020) Shifting Boundaries: Ecological and Geographical Range extension Based on Three New Species in the Cyanobacterial Genera <em>Cyanocohniella</em>, <em>Oculatella</em>, and, <em>Aliterella</em>. <em>Journal of Phycology</em> 56: 1216–1231. https://doi.org/10.1111/jpy.13025</p>
<p>Kiselev, K.V., Dubrovina, A.S. & Tyunin, A.P. (2015) The methylation status of plant genomic DNA influences PCR efficiency. <em>Journal of Plant Physiology</em> 175: 59–67. https://doi.org/10.1016/j.jplph.2014.10.017</p>
<p>Komárek, J., Johansen, J.R., Šmarda, J. & Strunecký, O. (2020) Phylogeny and taxonomy of <em>Synechococcus</em>-like cyanobacteria. <em>Fottea</em> 20: 171–191. https://doi.org/10.5507/fot.2020.006</p>
<p>Komárek, J., Kováčik, Ľ., Elster, J. & Komárek, O. (2012) Cyanobacterial diversity of Petuniabukta, Billefjorden, central Spitsbergen. <em>Polish Polar Research</em> 33: 347–368. https://doi.org/10.2478/V10183-012-0024-1</p>
<p>Köppen, W. (1936) Das geographische System der Klimate. <em>In:</em> Köppen, W. & Geiger, R. (Eds.) <em>Handbuch der Klimatologie</em> <em>Bd. 1: Teil C</em>. Verlag von Gebrüder Borntraeger, Berlin, pp. 1–44.</p>
<p>Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. <em>Bioinformatics</em> 35: 4453–4455. https://doi.org/10.1093/bioinformatics/btz305</p>
<p>Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. <em>Molecular Biology and Evolution</em> 33: 1870–1874. https://doi.org/10.1093/molbev/msw054</p>
<p>Lane, D.J. (1991) 16S/23S rRNA sequencing.<em> In: </em>Stackebrandt, E. & Goodfellow, M. (Eds.)<em> Nucleic acid techniques in bacterial systematics</em>. John Wiley and Sons, New York, pp. 115–175.</p>
<p>Lee, N.-J., Seo, Y., Ki, J.-S. & Lee, O.-M. (2020) Morphology and molecular description of <em>Wilmottia koreana sp. nov.</em> (Oscillatoriales, Cyanobacteria) isolated from the Republic of Korea. <em>Phytotaxa</em> 447: 237–251. https://doi.org/10.11646/phytotaxa.447.4.2</p>
<p>Li, Y., Cha, Q.-Q., Dang, Y.-R., Chen, X.-L., Wang, M., McMinn, A., Espina, G., Zhang, Y.-Z., Blamey, J.M. & Qin, Q.-L. (2019) Reconstruction of the Functional Ecosystem in the High Light, Low Temperature Union Glacier Region, Antarctica. <em>Frontiers in Microbiology</em> 10: 2408. https://doi.org/10.3389/fmicb.2019.02408</p>
<p>McFadden, G.I. & Melkonian, M. (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. <em>Phycologia</em> 25: 551–557. https://doi.org/10.2216/i0031-8884-25-4-551.1</p>
<p>Moissl, C., Osman, S., La Duc, M.T., Dekas, A., Brodie, E., DeSantis, T., Desantis, T. & Venkateswaran, K. (2007) Molecular bacterial community analysis of clean rooms where spacecraft are assembled. <em>FEMS microbiology ecology</em> 61: 509–521. https://doi.org/10.1111/j.1574-6941.2007.00360.x</p>
<p>Mühlsteinová, R. & Hauer, T. (2013) Pilot survey of cyanobacterial diversity from the neighborhood of San Gerardo de Rivas, Costa Rica with a brief summary of current knowledge of terrestrial cyanobacteria in Central America. <em>Brazilian Journal of Botany</em> 36: 299–307. https://doi.org/10.1007/s40415-013-0030-5</p>
<p>Nägeli, C. (1849) <em>Gattungen einzelliger Algen physiologisch und systematisch bearbeitet</em>. Friedrich Schulthess, Zürich. 139 pp. https://doi.org/10.5962/bhl.title.6805</p>
<p>Ortega-Morales, O., Montero-Muñoz, J.L., Baptista Neto, J.A., Beech, I.B., Sunner, J. & Gaylarde, C. (2019) Deterioration and microbial colonization of cultural heritage stone buildings in polluted and unpolluted tropical and subtropical climates: A meta-analysis. <em>International Biodeterioration & Biodegradation</em> 143: 104734. https://doi.org/10.1016/j.ibiod.2019.104734</p>
<p>Osorio-Santos, K., Pietrasiak, N., Bohunická, M., Miscoe, L.H., Kováčik, L., Martin, M.P. & Johansen, J.R. (2014) Seven new species of <em>Oculatella</em> (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. <em>European Journal of Phycology</em> 49: 450–470. https://doi.org/10.1080/09670262.2014.976843</p>
<p>Panwar, P., Allen, M.A., Williams, T.J., Hancock, A.M., Brazendale, S., Bevington, J., Roux, S., Paez-Espino, D., Nayfach, S., Berg, M., Schulz, F., Chen, I.-M.A., Huntemann, M., Shapiro, N., Kyrpides, N.C., Woyke, T., Eloe-Fadrosh, E.A. & Cavicchioli, R. (2020) Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community. <em>Microbiome</em> 8: 116. https://doi.org/10.1186/s40168-020-00889-8</p>
<p>Perkerson III, R.B., Johansen, J.R., Kovácik, L., Brand, J., Kaštovský, J. & Casamatta, D.A. (2011) A unique Pseudanabaenalean (Cyanobacteria) genus <em>Nodosilinea</em> <em>gen. nov. </em>based on morphological and molecular data. <em>Journal of Phycology</em> 47: 1397–1412. https://doi.org/10.1111/j.1529-8817.2011.01077.x</p>
<p>Pietrasiak, N., Mühlsteinová, R., Siegesmund, M.A. & Johansen, J.R. (2014) Phylogenetic placement of <em>Symplocastrum</em> (Phormidiaceae, Cyanophyceae) with a new combination <em>S. californicum</em> and two new species: <em>S. flechtnerae </em>and<em> S. torsivum</em>. <em>Phycologia</em> 53: 529–541. https://doi.org/10.2216/14-029.1</p>
<p>Pinheiro, A.C., Mesquita, N., Trovão, J., Soares, F., Tiago, I., Coelho, C., de Carvalho, H.P., Gil, F., Catarino, L., Piñar, G. & Portugal, A. (2019) Limestone biodeterioration: A review on the Portuguese cultural heritage scenario. <em>Journal of Cultural Heritage</em> 36: 275–285. https://doi.org/10.1016/j.culher.2018.07.008</p>
<p>Ribeiro, K.F., Duarte, L. & Crossetti, L.O. (2018) Everything is not everywhere: a tale on the biogeography of cyanobacteria. <em>Hydrobiologia</em> 820: 23–48. https://doi.org/10.1007/s10750-018-3669-x</p>
<p>Rigonato, J., Gama, W.A., Alvarenga, D.O., Branco, L.H.Z., Brandini, F.P., Genuário, D.B. & Fiore, M.F. (2016) <em>Aliterella atlantica</em> <em>gen. nov., sp. nov.</em>, and <em>Aliterella antarctica</em> <em>sp. nov.</em>, novel members of coccoid Cyanobacteria. <em>International Journal of Systematic and Evolutionary Microbiology</em> 66: 2853–2861. https://doi.org/10.1099/ijsem.0.001066</p>
<p>Rippka, R., Waterbury, J. & Cohen-Bazire, G. (1974) A cyanobacterium which lacks thylakoids. <em>Archives of Microbiology</em> 100: 419–436. https://doi.org/10.1007/BF00446333</p>
<p>Saw, J.H.W., Schatz, M., Brown, M.V., Kunkel, D.D., Foster, J.S., Shick, H., Christensen, S., Hoa, S., Wan, X. & Donachie, S.P. (2013) Cultivation and Complete Genome Sequencing of <em>Gloeobacter kilaueensis</em> <em>sp. nov.</em>, from a Lava Cave in Kîlauea Caldera, Hawai’i. <em>PLOS ONE</em> 8: e76376. https://doi.org/10.1371/journal.pone.0076376</p>
<p>Shorthouse, D.P. (2010) SimpleMappr, an online tool to produce publication-quality point maps. Available from: https://www.simplemappr.net/ (Accessed 5 March 2021)</p>
<p>Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML Web servers. <em>Systematic Biology</em> 57: 758–771. https://doi.org/10.1080/10635150802429642</p>
<p>Tripathi, S.N., Chung, I.K. & Lee, J.A. (2007) Diversity and characteristics of terrestrial cyanobacteria near gimhae city, Korea. <em>Journal of Plant Biology</em> 50: 50–59. https://doi.org/10.1007/BF03030600</p>
<p>Turner, S., Pryer, K.M., Miao, V.P. & Palmer, J.D. (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. <em>The Journal of Eukaryotic Microbiology</em> 46: 327–338. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x</p>
<p>Villa, F. & Cappitelli, F. (2019) The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. <em>Microorganisms</em> 7: 380. https://doi.org/10.3390/microorganisms7100380</p>
<p>Wang, Y., Cai, F., Jia, N. & Li, R. (2019) Description of a novel coccoid cyanobacterial genus and species <em>Sinocapsa zengkensis gen. nov. sp. nov. </em>(Sinocapsaceae, incertae sedis), with taxonomic notes on genera in Chroococcidiopsidales. <em>Phytotaxa</em> 409: 146–160. https://doi.org/10.11646/phytotaxa.409.3.3</p>
<p>Wilkins, D., Yau, S., Williams, T.J., Allen, M.A., Brown, M.V., DeMaere, M.Z., Lauro, F.M. & Cavicchioli, R. (2013) Key microbial drivers in Antarctic aquatic environments. <em>FEMS Microbiology Reviews</em> 37: 303–335. https://doi.org/10.1111/1574-6976.12007</p>
<p>Zammit, G., Billi, D. & Albertano, P. (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) <em>gen. et sp. nov.</em>: a cytomorphological and molecular description. <em>European Journal of Phycology</em> 47: 341–354. https://doi.org/10.1080/09670262.2012.717106</p>
<p>Zhang, Q., Zheng, L., Li, T., Li, R. & Song, L. (2018) <em>Aliterella shaanxiensis</em> (Aliterellaceae), a new coccoid cyanobacterial species from China. <em>Phytotaxa</em> 374: 211–220. https://doi.org/10.11646/phytotaxa.374.3.2</p>
<p>Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. <em>Nucleic Acids Research</em> 31: 3406–3415. https://doi.org/10.1093/nar/gkg595</p>