Abstract
Laburnicola is a genus in Didymosphaeriaceae that includes saprobic and endophytic fungal taxa. The current study conducted in the subalpine region of Uzbekistan discovered a new species on a dead stem of a wild rose plant. Maximum likelihood and Bayesian analyses of combined LSU, SSU, ITS, and TEF 1-ɑ dataset confirmed the new species’ taxonomic position in Laburnicola. Our new species, Laburnicola zaaminensis (TASM 6152), was clustered with L. dactylidis (MFLUCC 16-0285) with strong bootstrap support. A detailed description together with illustrations are provided for Laburnicola zaaminensis. Furthermore, an annotated species list, a distribution map, and a taxonomic key for Laburnicola species are provided. This is the first record of Laburnicola from Central Asia.
References
<p>Alidadi, A., Kowsari, M., Javan-Nikkhah, M., Karami, S., Ariyawansa, H.A. & Jouzani, G.S. (2019) <em>Deniquelata quercina</em> <em>sp. nov.</em>; a new endophyte species from Persian oak in Iran. <em>Phytotaxa</em> 405: 187–194. https://doi.org/10.11646/phytotaxa.405.4.2</p>
<p>Ariyawansa, H.A., Maharachchikumbura, S.S., Karunarathne, S.C., Chukeatirote, E., Bahkali, A.H., Kang, J.K., Bhat, D.J. & Hyde, K.D. (2013) <em>Deniquelata barringtoniae</em> <em>gen. et sp. nov.</em>, associated with leaf spots of <em>Barringtonia asiatica.</em> <em>Phytotaxa</em> 105: 11–20. http://dx.doi.org/10.11646/phytotaxa.105.1.2</p>
<p>Ariyawansa, H.A., Camporesi, E., Thambugala, K.M., Mapook, A., Kang, J.C., Alias, S.A., Chukeatirote, E., Thines, M., McKenzie, E.H. & Hyde, K.D. (2014b). Confusion surrounding <em>Didymosphaeria</em>—phylogenetic and morphological evidence suggest Didymosphaeriaceae is not a distinct family. <em>Phytotaxa</em> 176: 102–119. https://doi:10.11646/phytotaxa.176.1.12</p>
<p>Ariyawansa, H.A., Tanaka, K., Thambugala, K.M., Phookamsak, R., Tian, Q., Camporesi, E., Hongsanan, S., Monkai, J., Wanasinghe, D.N., Mapook, A. & Chukeatirote, E. (2014a). A molecular phylogenetic reappraisal of the Didymosphaeriaceae (= Montagnulaceae). <em>Fungal Diversity</em> 68: 69–104. https://doi.org/10.1007/s13225-014-0305-6</p>
<p>Bzdyk, R.M., Kohler, J., Olchowik, J., Aleksandrowicz-Trzcińska, M. & Kirisits, T. (2016) Arum-type of arbuscular mycorrhizae, dark septate endophytes and <em>Olpidium</em> spp. in fine roots of container-grown seedlings of <em>Sorbus torminalis</em> (Rosaceae). <em>Acta Societatis Botanicorum Poloniae</em> 85: 1–12. http://dx.doi.org/10.1016%2Fj.biocon.2013.12.007</p>
<p>Calvillo-Medina, R.P., Cobos-Villagrán, A. & Raymundo, T. (2020) <em>Periconia citlaltepetlensis</em> <em>sp. nov.</em> (Periconiaceae, Pleosporales): a psychrotolerant fungus from high elevation volcanic glacier (Mexico). <em>Phytotaxa</em> 459: 235–247.</p>
<p>Chin, J.M.W., Puchooa, D., Bahorun, T. & Jeewon, R. (2021) Molecular characterization of marine fungi associated with <em>Haliclona </em>sp. (sponge) and <em>Turbinaria conoides</em> and <em>Sargassum portierianum</em> (brown algae). <em>Proceedings of the National Academy of Sciences, India Section B: Biological Sciences</em> 91: 1–14. https://doi.org/10.1007/s40011-021-01229-y</p>
<p>Cox, J. & Lambert, J. (2013) <em>Microsoft PowerPoint 2013</em>. Microsoft Press, Washington, 481 pp.</p>
<p>Crous, P.W., Wingfield, M.J., Guarro, J., Hernández-Restrepo, M., Sutton, D.A., Acharya, K., Barber, P.A., Boekhout, T., Dimitrov, R.A., Dueñas, M. & Dutta, A.K. (2015a). Fungal Planet description sheets: 320–370. <em>Persoonia </em>34: 167–266. https://doi.org/10.3767/003158515x688433</p>
<p>Crous, P.W., Schumacher, R.K., Wingfield, M.J., Lombard, L., Giraldo, A., Christensen, M., Gardiennet, A., Nakashima, C., Pereira, O.L., Smith, A.J. & Groenewald, J.Z. (2015b). Fungal Systematics and Evolution: FUSE 1. <em>Sydowia</em> 67: 81–118.</p>
<p>Deng, C.H., Plummer, K.M., Jones, D.A., Mesarich, C.H., Shiller, J., Taranto, A.P., Robinson, A.J., Kastner, P., Hall, N.E., Templeton, M.D. & Bowen, J.K. (2017) Comparative analysis of the predicted secretomes of Rosaceae scab pathogens <em>Venturia inaequalis</em> and <em>V</em>. <em>pirina</em> reveals expanded effector families and putative determinants of host range. <em>BMC Genomics</em> 18: 1–25. https://doi.org/10.1186/s12864-017-3699-1</p>
<p>Dissanayake, L.S., Wijayawardene, N.N., Samarakoon, M.C., Hyde, K.D. & Kang, J.C. (2021) The taxonomy and phylogeny of <em>Austropleospora ochracea sp. nov.</em> (Didymosphaeriaceae) from Guizhou, China. <em>Phytotaxa</em> 491: 217–229. https://doi.org/10.11646/phytotaxa.491.3.2</p>
<p>Du, T., Hyde, K.D., Mapook, A., Mortimer, P.E., Xu, J., Karunarathna, S.C. & Tibpromma, S. (2021) Morphology and phylogenetic analyses reveal <em>Montagnula puerensis sp. nov.</em> (Didymosphaeriaceae, Pleosporales) from southwest China. <em>Phytotaxa</em> 514: 1–25. https://doi.org/10.11646/phytotaxa.514.1.1</p>
<p>Gafforov, Y. (2017) A preliminary checklist of ascomycetous microfungi from Southern Uzbekistan. <em>Mycosphere</em> 8: 660–696. https://doi.org/10.5943/mycosphere/8/4/12</p>
<p>Gafforov, Y., Ordynets, A., Langer, E., Yarasheva, M., de Mello Gugliotta, A., Schigel, D., Pecoraro, L., Zhou, Y., Cai, L. & Zhou, L.W. (2020) Species diversity with comprehensive annotations of wood-inhabiting poroid and corticioid fungi in Uzbekistan. <em>Frontiers in Microbiology</em> 11: 1–35. https://doi.org/10.3389/fmicb.2020.598321</p>
<p>Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, <em>Nucleaic Acids Symposium Series</em> 41: 95–98..</p>
<p>Hongsanan, S., Hyde, K.D., Bahkali, A.H., Camporesi, E., Chomnunti, P., Ekanayaka, H., Gomes, A.A., Hofstetter, V., Jones, E.G., Pinho, D.B. & Pereira, O.L. (2015) Fungal biodiversity profiles 11–20. <em>Cryptogamie</em>, <em>Mycologie</em> 36: 355–380. https://doi.org/10.7872/crym/v36.iss3.2015.355</p>
<p>Hrdina, A. & Romportl, D. (2017) Evaluating global biodiversity hotspots–very rich and even more endangered. <em>Journal of Landscape Ecology</em> 10: 108–115. http://dx.doi.org/10.1515/jlecol-2017-0013</p>
<p>Hyde, K.D., Jones, E.G., Liu, J.K., Ariyawansa, H., Boehm, E., Boonmee, S., Braun, U., Chomnunti, P., Crous, P.W., Dai, D.Q. & Diederich, P. (2013) Families of Dothideomycetes. <em>Fungal Diversity</em> 63: 1–313. https://doi.org/10.1007/s13225-013-0263-4</p>
<p>Hyde, K.D., Hongsanan, S., Jeewon, R., Bhat, D.J., McKenzie, E.H.C., Jones, E.B.G., Phookamsak, R., Ariyawansa, H.A., Boonmee, S., Zhao, Q. & Abdel-Aziz, F.A. (2016) Fungal diversity notes 367-490: taxonomic and phylogenetic contributions to fungal taxa. <em>Fungal Diversity</em> 80: 1–270. https://doi.org/10.1007/s13225-016-0373-x</p>
<p>Hyde, K.D., Norphanphoun, C., Abreu, V.P., Bazzicalupo, A., Chethana, K.T., Clericuzio, M., Dayarathne, M.C., Dissanayake, A.J., Ekanayaka, A.H., He, M.Q. & Hongsanan, S. (2017) Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. <em>Fungal Diversity</em> 87: 1–235.</p>
<p>Hyde, K.D., Norphanphoun, C., Chen, J., Dissanayake, A.J., Doilom, M., Hongsanan, S., Jayawardena, R.S., Jeewon, R., Perera, R.H., Thongbai, B. & Wanasinghe, D.N. (2018) Thailand’s amazing diversity: up to 96% of fungi in northern Thailand may be novel. <em>Fungal Diversity</em> 93: 215–239. https://doi.org/10.1007/s13225-018-0415-7</p>
<p>Jayasiri, S.C., Hyde, K.D., Ariyawansa, H.A., Bhat, J., Buyck, B., Cai, L., Dai, Y.C., Abd-Elsalam, K.A., Ertz, D., Hidayat, I. & Jeewon, R. (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. <em>Fungal Diversity</em> 74: 3–18. https://doi.org/10.1007/s13225-015-0351-8</p>
<p>Jayasiri, S.C., Hyde, K.D., Jones, E.B.G., McKenzie, E.H.C., Jeewon, R., Phillips, A.J.L., Bhat, D.J., Wanasinghe, D.N., Liu, J.K., Lu, Y.Z. & Kang, J.C. (2019) Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. <em>Mycosphere</em> 10: 1–186. https://10.5943/mycosphere/10/1/1</p>
<p>Jia, Y., Walder, F., Wagg, C. & Feng, G. (2021) Mycorrhizal fungi maintain plant community stability by mitigating the negative effects of nitrogen deposition on subordinate species in Central Asia. <em>Journal of Vegetation Science</em> 32: 12944. https://doi.org/10.1111/jvs.12944</p>
<p>Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. <em>Briefings in Bioinformatics </em>20: 1160–1166. https://doi.org/10.1093/bib/bbx108</p>
<p>Knapp, D.G., Imrefi, I., Boldpurev, E., Csíkos, S., Akhmetova, G., Berek-Nagy, P.J., Otgonsuren, B. & Kovács, G.M. (2019) Root-colonizing endophytic fungi of the dominant grass <em>Stipa krylovii</em> from a Mongolian steppe grassland. <em>Frontiers in microbiology</em> 10: 1–13. https://doi.org/10.3389/fmicb.2019.02565</p>
<p>Lemmon, A.R., Brown, J.M., Stanger-Hall, K. & Lemmon, E.M. (2009) The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. <em>Systematic biology</em> 58: 130–145. https://doi.org/10.1093/sysbio/syp017</p>
<p>Leus, L., Van Laere, K., De Riek, J. & Van Huylenbroeck, J. (2018) Rose. <em>In: Ornamental crops.</em> Springer, Cham, pp. 719–767. https://doi.org/10.1007/978-3-319-90698-0_27</p>
<p>Li, W.J., McKenzie, E.H., Liu, J.K.J., Bhat, D.J., Dai, D.Q., Camporesi, E., Tian, Q., Maharachchikumbura, S.S., Luo, Z.L., Shang, Q.J. & Zhang, J.F. (2020) Taxonomy and phylogeny of hyaline-spored coelomycetes. <em>Fungal Diversity</em> 100: 279–801. https://doi.org/10.1007/s13225-020-00440-y</p>
<p>Liu, J.K., Hyde, K.D., Jones, E.G., Ariyawansa, H.A., Bhat, D.J., Boonmee, S., Maharachchikumbura, S.S., McKenzie, E.H., Phookamsak, R., Phukhamsakda, C. & Shenoy, B.D. (2015) Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. <em>Fungal Diversity</em> 72: 1–197. https://doi.org/10.1007/s13225-015-0324-y</p>
<p>Mapook, A., Hyde, K.D., McKenzie, E.H., Jones, E.G., Bhat, D.J., Jeewon, R., Stadler, M., Samarakoon, M.C., Malaithong, M., Tanunchai, B. & Buscot, F. (2020) Taxonomic and phylogenetic contributions to fungi associated with the invasive weed <em>Chromolaena odorata</em> (Siam weed). <em>Fungal Diversity</em> 101: 1–175. https://doi.org/10.1007/s13225-020-00444-8</p>
<p>Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. <em>In</em>: <em>2010 Gateway Computing Environments Workshop (GCE).</em> Presented at the 2010 Gateway Computing Environments Workshop (GCE), IEEE, New Orleans, LA, USA, pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129</p>
<p>Mycobank (2021) Available from: http://www.mycobank.org/ (accessed 31 October 2021)</p>
<p>Nowak, A., Świerszcz, S., Nowak, S., Hisorev, H., Klichowska, E., Wróbel, A., Nobis, A. & Nobis, M. (2020) Red List of vascular plants of Tajikistan–the core area of the Mountains of Central Asia global biodiversity hotspot. <em>Scientific reports</em> 10: 1–10. https://doi.org/10.1038/s41598-020-63333-9</p>
<p>Phookamsak, R., Hyde, K.D., Jeewon, R., Bhat, D.J., Jones, E.G., Maharachchikumbura, S.S., Raspe, O., Karunarathna, S.C., Wanasinghe, D.N., Hongsanan, S. & Doilom, M. (2019) Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. <em>Fungal Diversity</em> 95: 1–273. https://doi.org/10.1007/s13225-019-00421-w</p>
<p>Rambaut, A., 2012. FigTree v1. 4.0. University of Oxford.</p>
<p>Rannala, B. & Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. <em>Journal of molecular evolution</em> 43 (3): 304–311. https://doi.org/10.1007/BF02338839</p>
<p>Rehner, S. (2001) <em>Primers for Elongation Factor 1-alpha (EF1-alpha).</em> Insect Biocontrol Laboratory: USDA, ARS, PSI [rehner@ba.ars.usda.gov]</p>
<p>Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. <em>Systematic biology</em> 61: 539–542. https://doi.org/10.1093/sysbio/sys029</p>
<p>Santos, L., Phillips, A.J.L., Crous, P.W. & Alves, A. (2017) <em>Diaporthe</em> species on Rosaceae with descriptions of <em>D. pyracanthae</em> <em>sp. nov.</em> and <em>D. malorum</em> <em>sp. nov.</em> <em>Mycosphere</em> 8: 485–511. https://doi.org/10.5943/mycosphere/8/5/2</p>
<p>Samarakoon, B.C., Phookamsak, R., Wanasinghe, D.N., Chomnunti, P., Hyde, K.D., McKenzie, E.H., Promputtha, I., Xu, J.C. & Li, Y.J. (2020b) Taxonomy and phylogenetic appraisal of <em>Spegazzinia musae</em> <em>sp. nov.</em> and <em>S. deightonii</em> (<em>Didymosphaeriaceae</em>, Pleosporales) on Musaceae from Thailand. <em>MycoKeys</em> 70: 19–37. https://doi.org/10.3897/mycokeys.70.52043</p>
<p>Samarakoon, B.C., Wanasinghe, D.N., Samarakoon, M.C., Phookamsak, R., McKenzie, E.H., Chomnunti, P., Hyde, K.D., Lumyong, S. & Karunarathna, S.C. (2020a) Multi-gene phylogenetic evidence suggests <em>Dictyoarthrinium</em> belongs in Didymosphaeriaceae (Pleosporales<em>,</em> Dothideomycetes) and <em>Dictyoarthrinium musae</em> <em>sp. nov.</em> on <em>Musa</em> from Thailand. <em>MycoKeys</em> 71: 101–118. https://doi.org/10.3897/mycokeys.71.55493</p>
<p>Schoch, C.L., Crous, P.W., Groenewald, J.Z., Boehm, E.W.A., Burgess, T.I., De Gruyter, J., De Hoog, G.S., Dixon, L.J., Grube, M., Gueidan, C. & Harada, Y. (2009) A class-wide phylogenetic assessment of Dothideomycetes. <em>Studies in Mycology</em> 64: 1–15. https://dx.doi.org/10.3114%2Fsim.2009.64.01</p>
<p>Senanayake, I.C., Rathnayaka, A.R., Marasinghe, D.S., Calabon, M.S., Gentekaki, E., Lee, H.B., Hurdeal, V.G., Pem, D., Dissanayake, L.S., Wijesinghe, S.N. & Bundhun, D. (2020) Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. <em>Mycosphere</em> 11: 2678–2754. http://dx.doi.org/10.5943/mycosphere/11/1/20</p>
<p>Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. <em>Bioinformatics</em> 30 (9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033</p>
<p>Suwannarach, N., Kumla, J. & Lumyong, S. (2021) <em>Spegazzinia camelliae sp. nov.</em> (Didymosphaeriaceae, Pleosprales), a new endophytic fungus from northern Thailand. <em>Phytotaxa</em> 483: 117–128. https://doi.org/10.11646/phytotaxa.483.2.4</p>
<p>Swindell, S.R. & Plasterer, T.N. (1997) Seqman. <em>In</em>: Plasterer, T.N. (Ed.)<em> Sequence data analysis guidebook</em>. Springer, Totowa, NJ, pp. 75–89</p>
<p>Tanaka, K., Hirayama, K., Yonezawa, H., Sato, G., Toriyabe, A., Kudo, H., Hashimoto, A., Matsumura, M., Harada, Y., Kurihara, Y. & Shirouzu, T. (2015) Revision of the Massarineae (Pleosporales, Dothideomycetes). <em>Studies in Mycology</em> 82: 75–136. https://doi.org/10.1016/j.simyco.2015.10.002</p>
<p>Tibpromma, S., Hyde, K.D., McKenzie, E.H., Bhat, D.J., Phillips, A.J., Wanasinghe, D.N., Samarakoon, M.C., Jayawardena, R.S., Dissanayake, A.J., Tennakoon, D.S. & Doilom, M. (2018) Fungal diversity notes 840–928: micro-fungi associated with Pandanaceae. <em>Fungal Diversity</em> 93: 1–160. https://doi.org/10.1007/s13225-018-0408-6</p>
<p>Verkley, G.J.M., Dukik, K., Renfurm, R., Göker, M. & Stielow, J.B. (2014) Novel genera and species of <em>coniothyrium</em>-like fungi in Montagnulaceae (Ascomycota).<em> Persoonia</em> 32: 25–51. https://doi.org/10.3767/003158514X679191</p>
<p>Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several <em>Cryptococcus</em> species. <em>Journal of Bacteriology</em> 172: 4238–4246.</p>
<p>Vu, D., Groenewald, M., De Vries, M., Gehrmann, T., Stielow, B., Eberhardt, U. & Verkley, G.J.M. (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation.<em> Studies in Mycology</em> 92: 135–154.<em> h</em>ttps://doi.org/10.1016/j.simyco.2018.05.001</p>
<p>Wanasinghe, D.N., Jones, E.B.G., Camporesi, E., Dissanayake, A.J., Kamolhan, S., Mortimer, P.E., Xu, J., Abd-Elsalam, K.A. & Hyde, K.D. (2016) Taxonomy and phylogeny of <em>Laburnicola</em> <em>gen. nov.</em> and <em>Paramassariosphaeria</em> <em>gen. nov.</em> (Didymosphaeriaceae, Massarineae, Pleosporales). <em>Fungal biology</em> 120: 1354–1373. https://doi.org/10.1016/j.funbio.2016.06.006</p>
<p>Wanasinghe, D.N., Phukhamsakda, C., Hyde, K.D., Jeewon, R., Lee, H.B., Jones, E.G., Tibpromma, S., Tennakoon, D.S., Dissanayake, A.J., Jayasiri, S.C. & Gafforov, Y. (2018) Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. <em>Fungal Diversity</em> 89: 1–236. https://doi.org/10.1007/s13225-018-0395-7</p>
<p>Wanasinghe, D.N., Wijayawardene, N.N., Xu, J., Cheewangkoon, R. & Mortimer, P.E. (2020) Taxonomic novelties in<em> Magnolia</em>-associated <em>pleosporalean </em>fungi in the Kunming Botanical Gardens (Yunnan, China). <em>Plos one</em> 15: e0235855.<em> h</em>ttps://doi.org/10.1371/journal.pone.0235855</p>
<p>White, T.J., Bruns, T., Lee, S.J.W.T. & Taylor, J.L. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. <em>PCR protocols: a guide to methods and applications</em> 18: 315–322.</p>
<p>Wijayawardene, N.N., Hyde, K.D., Al-Ani, L.K.T., Tedersoo, L., Haelewaters, D., Rajeshkumar, K.C., Zhao, R.L., Aptroot, A., Leontyev, D., Saxena, R.K. & Tokarev, Y.S. (2020) Outline of Fungi and fungus-like taxa. <em>Mycosphere</em> 11: 1060–1456. http://dx.doi.org/10.5943/mycosphere/11/1/8</p>
<p>Yuan, Z., Druzhinina, I.S., Wang, X., Zhang, X., Peng, L. & Labbé, J. (2020) Insight into a highly polymorphic endophyte isolated from the roots of the halophytic seepweed <em>Suaeda salsa</em>: <em>Laburnicola rhizohalophila sp. nov.</em> (Didymosphaeriaceae, Pleosporales).<em> Fungal Biology</em> 124: 327–337. https://doi.org/10.1016/j.funbio.2019.10.001</p>
<p>Zhang, Y., Fournier, J., Phookamsak, R., Bahkali, A.H. & Hyde, K.D. (2013) Halotthiaceae <em>fam. nov. </em>(Pleosporales) accommodates the new genus <em>Phaeoseptum</em> and several other aquatic genera. <em>Mycologia</em> 105: 603–609. https://doi.org/10.3852/11-286</p>
<p>Zhang, Y., Zhang, J., Wang, Z., Fournier, J., Crous, P.W., Zhang, X., Li, W., Ariyawansa, H.A. & Hyde, K.D. (2014) Neotypification and phylogeny of <em>Kalmusia</em>. <em>Phytotaxa</em> 176: 164–173. https://doi.org/10.11646/phytotaxa.176.1.16</p>
<p>Zhang, Y., Zhang, D., Li, W., Li, Y., Zhang, C., Guan, K. & Pan, B. (2020) Characteristics and utilization of plant diversity and resources in Central Asia. <em>Regional Sustainability</em> 1: 1–10. https://doi.org/10.1016/j.regsus.2020.08.001</p>
<p>Zhaxybayeva, O. & Gogarten, J.P. (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. <em>BMC genomics</em> 3: 1–15. https://doi.org/10.1186/1471-2164-3-4</p>