Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2026-01-16
Page range: 243-253
Abstract views: 52
PDF downloaded: 5

Jaagichlorella terrestris sp. nov. (Trebouxiophyceae, Chlorophyta)—a new species from tropical forest in Vietnam

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, 33, Leninsky Prospekt, Moscow 119071, Russia; Joint Vietnam-Russia Tropical Science and Technology Research Center, Southern branch, Ho Chi Minh City, 740500, Vietnam
Institute of Biology Komi Science Center Ural Branch Russian Academy of Science, 28, Kommunisticheskaya St., Syktyvkar, 167982, Russia
T. I. Vyazemsky Karadag Scientific Station—Nature Reserve of Russian Academy of Sciences Branch of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 24, Nauki Street, Feodosia, Kurortnoye, 298188, Russia
Joint Vietnam-Russia Tropical Science and Technology Research Center, Southern branch, Ho Chi Minh City, 740500, Vietnam
Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, 33, Leninsky Prospekt, Moscow 119071, Russia; Joint Vietnam-Russia Tropical Science and Technology Research Center, Southern branch, Ho Chi Minh City, 740500, Vietnam; Komarov Botanical Institute of the Russian Academy of Sciences, 2, St. Professor Popov, St. Petersburg, 197022, Russia
Jaagichlorella molecular studies soil biofilm Unicellular green algae Algae

Abstract

The genus Jaagichlorella Reisigl (Watanabeales, Trebouxiophyceae) was described in 1964 and revised in 2019. It includes unicellular coccoid green algae. Currently, the genus encompasses ten species and two varieties. The species from this genus inhabit different environments: freshwater, marine and as epiphytes of different natural and artificial substrates. Here, we describe Jaagichlorella terrestris sp. nov. isolated from soil biofilm from tropical forest in Cát Tiên National Park (Vietnam). A polyphasic approach combining morphological analysis, phylogenetic reconstruction, genetic distance evaluation, and CBC species concept was used to investigate the strains of new species. J. terrestris is related to J. sphaerica, but has smaller cells and some molecular differences, including the presence of CBC and hemi-CBCs.

References

  1. Albertano, P., Pollio, A. & Taddei, R. (1991) Viridiella fridericiana (Chlorococcales, Chlorophyta), a new species isolated from extremely acid environments. Phycologia 30 (4): 346–354. https://doi.org/10.2216/i0031-8884-30-4-346.1
  2. Arguelles, E. DLR. (2019) New records of corticolous microalgae and cyanobacteria for Philippine algal flora from mt. Makiling forest reserve. Article in Journal of Microbiology Biotechnology and Food Sciences 9 (1): 1–8. https://doi.org/10.15414/jmbfs.2019.9.1.1-8
  3. Belevich, T.A., Ilyash, L.V., Milyutina, I.A., Logacheva, M.D., Goryunov, D.V. & Troitsky, A.V. (2015) Metagenomic analyses of White Sea picoalgae: first data. Biochemistry (Moscow) 80: 1514‒1521. https://doi.org/10.1134/S0006297915110140
  4. Blanc, L., Maury-Lechon, G. & Pascal, J.P. (2001) Structure, floristic composition and natural regeneration in the forests of Cat Tien National Park, Vietnam: an analysis of the successional trends. Journal of Biogeography 27: 141‒157. https://doi.org/10.1046/j.1365-2699.2000.00347.x
  5. Byun, Y. & Han, K. (2006) PseudoViewer: web application and webservice for visualizing RNA pseudoknots and secondary structures. Nucleic Acids Research 34: 416‒422. https://doi.org/10.1093/nar/gkl210
  6. Caisová, L., Marin, B. & Melkonian, M. (2013) A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist 164: 482‒496. https://doi.org/10.1016/j.protis.2013.04.005
  7. Chernomor, O., von Haeseler, A. & Minh, B.Q. (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic biology 65: 997–1008. https://doi.org/10.1093/sysbio/syw037
  8. Choi, B., Son, M., Kim, J.I. & Shin, W. (2013) Taxonomy and phylogeny of the genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea. Algae 28: 307‒330. https://doi.org/10.4490/algae.2013.28.4.307
  9. Coleman, A.W. (2000) The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 151: 1‒9. https://doi.org/10.1078/1434-4610-00002
  10. Coleman, A.W. (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics 19: 370‒375. https://doi.org/10.1016/S0168-9525(03)00118-5
  11. Darienko, T. & Pröschold, T. (2019a) Reevaluation and discovery of new species of the rare genus Watanabea and establishment of Massjukichlorella gen. nov. (Trebouxiophyceae, Chlorophyta) using an integrative approach. Journal of Phycology 55 (2): 493–499. https://doi.org/10.1111/jpy.12830
  12. Darienko, T. & Pröschold, T. (2019b) The genus Jaagichlorella Reisigl (Trebouxiophyceae, Chlorophyta) and its close relatives: an evolutionary puzzle. Phytotaxa 388: 47‒68. https://doi.org/10.11646/phytotaxa.388.1.2
  13. Darienko, T. & Pröschold, T. (2020) Calidiella, a new generic name for Desertella (Trebouxiophyceae). Notulae Algarum 165: 1.
  14. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. https://doi.org/10.1038/nmeth.2109
  15. Don, G. (1831) A General System of Gardening and Botany. London, pp. 813.
  16. Fiori, A. & Paoletti, G. (1896) Flora analitica d’Italia 1. Tipografia del Seminario, Padova, 607 pp.
  17. Gaertner, C.F. (1805) Supplementum Carpologiae: seu continuati operis Josephi Gaertner De fructibus et seminibus plantarum. Leipzig, 256 pp.
  18. Griffith, W. (1846) Papers on various subjects, bearing date in 1834 and 1835. Proceedings of the Linnean Society of London 1 (28): 281–324.
  19. Guiry, M.D. & Guiry, G.M. (2025) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: https://www.algaebase.org (accessed 8 August 2025)
  20. Hamby, R.K., Sims, L., Issel, L. & Zimmer, E. (1988) Direct ribosomal RNA sequencing: optimization of extraction and sequencing methods for work with higher plants. Plant Molecular Biology Reporter 6: 175‒192. https://doi.org/10.1007/BF02669591
  21. Hanagata, N., Karube, I., Chihara, M. & Silva, P.C. (1998) Reconsideration of the taxonomy of ellipsoidal species of Chlorella (Trebouxiophyceae, Chlorophyta), with establishment of Watanabea gen. nov. Phycological Research 46 (4): 221‒229. https://doi.org/10.1111/j.1440-1835.1998.tb00117.x
  22. Hoshina, R., Tsukii, Y., Harumoto, T. & Suzaki, T. (2021) Characterization of a green Stentor with symbiotic algae growing in an extremely oligotrophic environment and storing large amounts of starch granules in its cytoplasm. Scientific Reports 11: 2865. https://doi.org/10.1038/s41598-021-82416-9
  23. Hoshina, R., Iwataki, M. & Imamura, N. (2010) Chlorella variabilis and Micractinium reisseri sp. nov. (Chlorellaceae, Trebouxiophyceae): Redescription of the endosymbiotic green algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year. Phycological Research 58: 188–201. https://doi.org/10.1111/j.1440-1835.2010.00579.x
  24. Katana, A., Kwiatowski, J., Spalik, K., Zakrys, B., Szalacha, E. & Szymanska, H. (2001) Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. Journal of Phycology 37: 443–451. https://doi.org/10.1046/j.1529-8817.2001.037003443.x
  25. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108
  26. Kezlya, E., Glushchenko, A., Kociolek, J.P., Maltsev, Y., Martynenko, N., Genkal, S. & Kulikovskiy, M. (2020a) Mayamaea vietnamica sp. nov.: a new, terrestrial diatom (Bacillariophyceae) species from Vietnam. Algae 35: 325–335. https://doi.org/10.4490/algae.2020.35.11.23
  27. Kezlya, E., Glushchenko, A., Maltsev, Y., Gusev, E., Genkal, S., Kuznetsov, A., Kociolek, J.P. & Kulikovskiy, M. (2020b) Placoneis cattiensis sp. nov.—a new, diatom (Bacillariophyceae: Cymbellales) soil species from Cát Tiên National Park (Vietnam). Phytotaxa 460: 237–248. https://doi.org/10.11646/phytotaxa.460.4.1
  28. Kezlya, E., Maltsev, Y., Genkal, S., Krivova, Z. & Kulikovskiy, M. (2022) Phylogeny and Fatty Acid Profiles of New Pinnularia (Bacillariophyta) Species from Soils of Vietnam. Cells 11: 2446. https://doi.org/10.3390/cells11152446
  29. Kim, K.M., Kang, N.S., Jang, H.S., Park, J.S., Jeon, B.H. & Hong, J.W. (2017) Characterization of Heterochlorella luteoviridis (Trebouxiaceae, Trebouxiophyceae) isolated from the Port of Jeongja in Ulsan, Korea. Journal of Marine Bioscience and Biotechnology 9: 22–29. https://doi.org/10.15433/ksmb.2017.9.2.022
  30. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. https://doi.org/10.1093/molbev/msy096
  31. Kühn, J.G. (1878) Ueber eine neue parasitische Alge Phyllosiphon Arisari welche die Laubblaetter einer terrestrischen Pflanze ganz in derselben Weise befaellt, wie dies von parasitischen Pilzen bekannt ist. Sitzungsberichten der naturforschenden Gesellschaft zu Halle 1878: 25–26.
  32. Li, S., Sun, H., Hu, Y., Liu, B., Zhu, H., Hu, Z. & Liu, G. (2020) Four new members of foliicolous green algae within the Watanabea clade (Trebouxiophyceae, Chlorophyta) from China. Journal of Eukaryotic Microbiology 67: 369–82. https://doi.org/10.1111/jeu.12787
  33. Li, S., Tan, H., Liu, B., Zhu, H., Hu, Z. & Liu, G. (2021) Watanabeales ord. nov. and twelve novel species of Trebouxiophyceae (Chlorophyta). Journal of Phycology 57: 1167–1186. https://doi.org/10.1111/jpy.13165-20-198
  34. Liu, B.W., Li, S.Y., Zhu, H. & Liu, G.X. (2023) Phyllosphere eukaryotic microalgal communities in rainforests: drivers and diversity. Plant Diversity 45: 45–53. https://doi.org/10.1016/j.pld.2022.08.006
  35. Khokhlova, O.S., Myakshina, T.N., Kuznetsov, A.N. & Gubin, S.V. (2017) Morphogenetic features of soils in the Cat Tien national park, Southern Vietnam, Pochvovedenie 2: 176–194. https://doi.org/10.7868/S0032180X1612008X
  36. Maltsev, Y., Kezlya, E., Maltseva, S., Krivova, Z., Ðinh, C.N. & Kulikovskiy, M. (2025) Phylogeny and fatty acid profiles of new Coccomyxa (Chlorophyta) species from soils of Vietnam. Frontiers in Microbiology 16: 1517865. https://doi.org/10.3389/fmicb.2025.1517865
  37. Maltseva, S., Kezlya, E., Krivova, Z., Gusev, E., Kulikovskiy, M. & Maltsev, Y. (2022) Phylogeny and fatty acid profiles of Aliinostoc vietnamicum sp. nov. (cyanobacteria) from the soils of Vietnam. Journal of Phycology 58: 789–803. https://doi.org/10.1111/jpy.13283
  38. Martynenko, N., Kezlya, E. & Gusev, E. (2022) Description of a new species of the genus Cryptomonas (Cryptophyceae: Cryptomonadales), isolated from soils in a tropical forest. Diversity 14: 1001. https://doi.org/10.3390/d14111001
  39. McFadden, G.I. & Melkonian, M. (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25: 551–557. https://doi.org/10.2216/i0031-8884-25-4-551.1
  40. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular biology and evolution 37 (5): 1530–1534. https://doi.org/10.1093/molbev/msaa015
  41. Müller, T., Philippi, N., Dandekar, T., Schultz, J. & Wolf, M. (2007) Distinguishing species. RNA 13: 1469–1472. https://doi.org/10.1261/rna.617107
  42. Nadson, G.A. (1906) K morfologii nizshykh vodorosley (Predvaritelnoe soobshchenie). Izvestiya Imperatorskogo Sankt-Peterburgskogo Botanicheskogo Sada 6 (5-6): 184–194.
  43. Nakayama, T., Watanabe, S., Mitsui, K., Uchida, H. & Inouye, I. (1996) The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycological Research 44: 47–55. https://doi.org/10.1111/j.1440-1835.1996.tb00037.x
  44. Neustupa, J., Eliáš, M., Škaloud, P., Němcová, Y. & Šejnohová, L. (2011) Xylochloris irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phycologia 50: 57–66. https://doi.org/10.2216/08-64.1
  45. Neustupa, J., Nemcová, Y., Eliéas, M. & Skaloud, P. (2009) Kalinella bambusicola gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid Chlorella-like subaerial alga from Southeast Asia. Phycological Research 57: 159–169. https://doi.org/10.1111/j.1440-1835.2009.00534.x
  46. Neustupa, J. & Škaloud, P. (2010) Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant Ecology and Evolution 143: 51–62. https://doi.org/10.5091/plecevo.2010.417
  47. Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  48. Reisigl, H. (1964) Zur Systematik und Ökologie alpiner Bodenalgen. Österreichische botanische Zeitschrift 111: 402–499. https://doi.org/10.1007/BF01372910
  49. Schultz, J., Maisel, S., Gerlach, D., Müller, T. & Wolf, M. (2005) A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 11: 361–364. https://doi.org/10.1261/rna.7204505
  50. Seibel, P.N., Müller, T., Dandekar, T., Schultz, J. & Wolf, M. (2006) 4SALE—a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 7: 498. https://doi.org/10.1186/1471-2105-7-498
  51. Song, H.Y., Zhang, Q., Liu, G.X. & Hu, Z.Y. (2015) Polulichloris henanensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phytotaxa 218 (2): 137–146. https://doi.org/10.11646/phytotaxa.218.2.3
  52. Song, H., Hu, Y., Zhu, H., Wang, Q., Liu, G. & Hu, Z. (2016) Three novel species of coccoid green algae within the Watanabea clade (Trebouxiophyceae, Chlorophyta). International Journal of Systematic and Evolutionary Microbiology 66 (12): 5465–5477. https://doi.org/10.1099/ijsem.0.001542
  53. Song, H., Guan, R., He, T., Zhang, L., Li, T., Zhou, J., Hu, Y., Li, S., Liu, F., Li, L., Zhang, N., Xiao, H., Cai, L., Zhang, H., Xiong, B., Peng, H. & Liu, G. (2025) Jaagichlorella menglunensis sp. nov. (Watanabeales, Chlorophyta), a new coccoid green alga isolated from China. Journal of Oceanology and Limnology : 1–12. https://doi.org/10.1007/s00343-025-4278-y
  54. Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTALW: Improving the sensitivity of progressive multiple sequence through weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  55. Tschermak-Woess, E. (1988) New and known taxa of Chlorella (Chlorophyceae): occurrence as lichen photobionts and observations on living dictyosomes. Plant Systematics and Evolution 159: 123–139. https://doi.org/10.1007/BF00937430
  56. White, T.J., Bruns, T.D., Lee, S.B. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.) PCR protocols: A Guide to Methods and Applications. Academic Press, San Diego, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  57. Zhu, H., Li, S., Hu, Z. & Liu, G. (2018) Molecular characterization of eukaryotic algal communities in the tropical phyllosphere based on real-time sequencing of the 18S rDNA gene. BMC Plant Biology 18: 1–14. https://doi.org/10.1186/s12870-018-1588-7
  58. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31: 3406‒3415. https://doi.org/10.1093/nar/gkg595

How to Cite

Martynenko, N.A., Novakovskaya, I.V., Podunay, Y.A., Van, N.T. & Gusev, E.S. (2026) Jaagichlorella terrestris sp. nov. (Trebouxiophyceae, Chlorophyta)—a new species from tropical forest in Vietnam. Phytotaxa 737 (4): 243–253. https://doi.org/10.11646/phytotaxa.737.4.5