Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-12-05
Page range: 267-279
Abstract views: 16
PDF downloaded: 0

Molecular phylogeny and taxonomic revision of Coleosporiaceae (Pucciniales): the genera Quasipucciniastrum and Aculeastrum reassessed and a new combination proposed

Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Str. 2, 197022 St Petersburg, Russia
Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Str. 2, 197022 St Petersburg, Russia
28S nuc rDNA Basidiomycota ITS Pucciniomycotina rust fungi type specimens 1 new nomenclature combination 1 new lectotypification Fungi

Abstract

Two genera of rust fungi, Quasipucciniastrum and Aculeastrum, have recently been described within the family Coleosporiaceae. However, their taxonomic status as separate, independent genera remained a matter of debate. In the present study, we investigated the taxonomy of Quasipucciniastrum and Aculeastrum using morphological and molecular (nuc rDNA 5.8S-ITS2 [ITS barcode] and partial nuc 28S rDNA D1–D3 regions [28S]) data, including a detailed study of the type collections of Pucciniastrum potentillae and Thekopsora agrimoniae. Based on type specimen examination, Asian species Q. potentillae is considered synonym of Q. ochraceum. Furthermore, as the main outcome of our phylogenetic study, we synonymize Quasipucciniastrum and Aculeastum with the genus Thekopsora, and propose a new nomenclatural combination Thekopsora arctica.

References

  1. Aime, M.C. (2006) Toward resolving family-level relationships in rust fungi (Uredinales). Mycoscience 47 (3): 112–122. https://doi.org/10.1007/S10267-006-0281-0
  2. Aime, M.C., Bell, C.D. & Wilson, A.W. (2018) Deconstructing the evolutionary complexity between rust fungi (Pucciniales) and their plant hosts. Studies in Mycology 89: 143–152. https://doi.org/10.1016/j.simyco.2018.02.002
  3. Aime, M.C. & McTaggart, A.R. (2021) A higher-rank classification for rust fungi, with notes on genera. Fungal Systematics and Evolution 7: 21–47. https://doi.org/10.3114/fuse.2021.07.02
  4. Alfaro, M.E., Zoller, S. & Lutzoni, F. (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution 20: 255–266. https://doi.org/10.1093/molbev/msg028
  5. Beenken, L., Zoller, S. & Berndt, R. (2012) Rust fungi on Annonaceae II: The genus Dasyspora Berk. et M.A. Curtis. Mycologia 104 (3): 659–681. https://doi.org/10.3852/11-068
  6. Bubner, B., Buchheit, R., Friedrich, F., Kummer, V. & Scholler, M. (2019) Species identification of European forest pathogens of the genus Milesina (Pucciniales) using urediniospore morphology and molecular barcoding including M. woodwardiana sp. nov. Mycokeys 48: 1–40. https://doi.org/10.3897/mycokeys.48.30350
  7. Capella-Gutierrez, S., Silla-Martinez, J.M. & Gabaldon, T. (2009) TrimAl, a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  8. Chattopadhyay, A., Tiwari, K.K., Bhushan, K. & Pratap, D. (2017) Genic molecular markers in Fungi: availability and utility for bioprospection. In: Singh, B.P. & Gupta, V.K. (Eds.) Molecular markers in mycology. Fungal Biology. Springer, Cham, pp. 151–176. https://doi.org/10.1007/978-3-319-34106-4_7
  9. Feau, N., Vialle, A., Allaire, M., Maier, W. & Hamelin, R.C. (2011) DNA barcoding in the rust genus Chrysomyxa and its implications for the phylogeny of the genus. Mycologia 103 (6): 1250–1266. https://doi.org/10.3852/10-426
  10. Gäumann, E. (1959) Die Rostpilze Mitteleuropas mit besonderer Berücksichtigung der Schweiz. Büchler, Bern, 1407 pp.
  11. He, M.Q., Cao, B., Liu, F., Boekhout, T., Denchev, T.T., Schoutteten, N., Denchev, C.M., Kemler, M., Gorjón, S.P., Begerow, D., Valenzuela, R., Davoodian, N., Niskanen, T., Vizzini, A., Redhead, S.A., Ramírez.Cruz, V., Papp, V., Dudka, V.A., Dutta, A.K., García.Sandoval, R., Liu, X.Z., Kijpornyongpan, T., Savchenko, A., Tedersoo, L., Theelen, B., Trierveiler-Pereira, L., Wu, F., Zamora, J.C., Zeng, X.Y., Zhou, L.W., Liu, S.L., Ghobad-Nejhad, M., Giachini, A.J., Li, G.J., Kakishima, M., Olariaga, I., Haelewaters, D., Sulistyo, B., Sugiyama, J., Svantesson, S., Yurkov, A., Alvarado, P., Antonín, V., da Silva, A.F., Druzhinina, I., Gibertoni, T.B., Guzmán-Dávalos, L., Justo, A., Karunarathna, S.C., Galappaththi, M.C.A., Toome-Heller, M., Hosoya, T., Liimatainen, K., Márquez, R., Mešić, A., Moncalvo, J.M., Nagy, L.G., Varga, T., Orihara, T., Raymundo, T., Salcedo, I., Silva-Filho, A.G.S., Tkalčec, Z., Wartchow, F., Zhao, C.L., Bau, T., Cabarroi-Hernández, M., Cortés-Pérez, A., Decock, C., De Lange, R., Weiss, M., Menolli Jr., N., Nilsson, R.H., Fan, Y.G., Verbeken, A., Gafforov, Y., Meiras-Ottoni, A., Mendes-Alvarenga, R.L., Zeng, N.K., Wu, Q., Hyde, K.D., Kirk, P.M. & Zhao, R.L. (2024) Phylogenomics, divergence times and notes of orders in Basidiomycota. Fungal Diversity 126: 127–406. https://doi.org/10.1007/s13225-024-00535-w
  12. Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192. https://doi.org/10.1093/sysbio/42.2.182
  13. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20 (4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  14. Letunic, I. & Bork, P. (2019) Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Research 47: W256–W259. https://doi.org/10.1093/nar/gkz239
  15. Liang, Y.-M., Kakishima, M. & Tian, C.-M. (2006) Phylogenetic relationships on 14 morphologically similar species of Pucciniastrum in Japan based on rDNA sequence data. Mycoscience 47 (3): 137–144. https://doi.org/10.1007/S10267-006-0284-X
  16. McTaggart, A.R. & Aime, M.C. (2018) The species of Coleosporium (Pucciniales) on Solidago in North America. Fungal Biology 122 (8): 800–809. https://doi.org/10.1016/j.funbio.2018.04.007
  17. Matheny, P.B., Wang, Z., Binder, M., Curtis, J.M., Lim, Y.W., Nilsson, R.H., Hughes, K.W., Hofstetter, V., Ammirati, J.F., Schoch, C.L., Langer, E., Langer, G., McLaughlin, D.J., Wilson, A.W., Frøslev, T., Ge, Z.-W., Kerrigan, R.W., Slot, J.C., Yang, Z.-L., Baroni, T.J., Fischer, M., Hosaka, K., Matsuura, K., Seidl, M.T., Vauras, J. & Hibbett, D.S. (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Molecular Phylogenetics and Evolution 43 (2): 430–451. https://doi.org/10.1016/j.ympev.2006.08.024
  18. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904. https://doi.org/10.1093/sysbio/syy032
  19. Qi, X.-H., Cai, L. & Zhao, P. (2019) Quasipucciniastrum agrimoniae, gen. et sp. nov. on Agrimonia (Rosaceae) from China. Mycology 10: 141–150. https://doi.org/10.1080/21501203.2019.1610522
  20. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and modelchoice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  21. Scholler, M., Braun, U., Buchheit, R., Schulte, T. & Bubner, B. (2022) Studies on European rust fungi, Pucciniales: molecular phylogeny, taxonomy, and nomenclature of miscellaneous genera and species in Pucciniastraceae and Coleosporiaceae. Mycological Progress 21: 64. https://doi.org/10.1007/s11557-022-01810-3
  22. Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38: 3022–3027. https://doi.org/10.1093/molbev/msab120
  23. Tekpinar, A.D. & Kalmer, A. (2019) Utility of various molecular markers in fungal identification and phylogeny. Nova Hedwigia 109 (1-2): 187–224. https://doi.org/10.1127/nova_hedwigia/2019/0528
  24. Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44: W232–W235. https://doi.org/10.1093/nar/gkw256
  25. Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4239–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  26. Vu, D., Groenewald, M., de Vries, M., Gehrmann, T., Stielow, B., Eberhardt, U., Al-Hatmi, A., Groenewald, J.Z., Cardinali, G., Houbraken, J., Boekhout, T., Crous, P.W., Robert, V. & Verkley, G.J.M. (2018) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
  27. Wilson, A.W., Beckerman, J.L. & Aime, M.C. (2014) First Report of the White Pine Blister Rust Fungus, Cronartium ribicola, on Ribes odoratum in Indiana. Plant Disease 98 (2): 277. https://doi.org/10.1094/PDIS-04-13-0442-PDN
  28. Yang, T., Tian, C.-M., Liang, Y.-M. & Kakishima, M. (2014) Thekopsora ostryae (Pucciniastraceae, Pucciniales), a new species from Gansu, northwestern China. Mycoscience 55: 246–251. https://doi.org/10.1016/j.myc.2013.09.005
  29. Zhao, P., Liu, F., Huang, J.E., Zhou, X., Qi, X.H., Duan, W.J. & Cai, L. (2022) Cronartium rust (Pucciniales, Cronartiaceae): species delineation,diversity and host alternation. Mycosphere 13 (1): 672–723. https://doi.org/10.5943/mycosphere/13/1/7

How to Cite

Malysheva, V. & Dudka, V. (2025) Molecular phylogeny and taxonomic revision of Coleosporiaceae (Pucciniales): the genera Quasipucciniastrum and Aculeastrum reassessed and a new combination proposed. Phytotaxa 732 (3): 267–279. https://doi.org/10.11646/phytotaxa.732.3.4