Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-11-06
Page range: 259-271
Abstract views: 208
PDF downloaded: 129

Molecular taxonomy of Vicia L. species (Fabaceae) from the mountainous regions of Iraqi Kurdistan based on ITS barcoding

Department of Plant Production and Genetics, Institute of Agriculture, Water, Food and Nutraceuticals, Isf.C., Islamic Azad University, Isfahan, Iran, Continuing Education Center, Mustansiriyah University, Baghdad, Iraq
Department of Plant Production and Genetics, Institute of Agriculture, Water, Food and Nutraceuticals, Isf.C., Islamic Azad University, Isfahan, Iran
Department of Biology, College of Education for Pure Sciences, Ibn-Al-Haitham, University of Baghdad, Iraq
Department of Plant Production and Genetics, Institute of Agriculture, Water, Food and Nutraceuticals, Isf.C., Islamic Azad University, Isfahan, Iran
DNA barcoding genetic divergence species delimitation phylogenetics plant conservation Eudicots

Abstract

Accurate species identification within Vicia remains challenging due to high morphological variability, phenotypic plasticity, and frequent hybridization. This study presents the first molecular assessment of nine wild Vicia species from the mountainous area of Iraqi Kurdistan using the ITS region. A dataset of 32 ITS sequences (nine Iraqi accessions and 23 GenBank references) was analyzed for genetic divergence and species discrimination. Intraspecific K2P distances ranged from 0.002 to 0.018, while interspecific distances varied from 0.005 to 0.111, generally exceeding intraspecific divergence. Barcode gap analysis revealed a clear species-level separation in Vicia ervilia L., Vicia faba L., Vicia. narbonensis L., and Vicia sericocarpa Fenzl, whereas only partial overlap was observed in Vicia tenuifolia Roth., Vicia villosa Roth., Vicia palaestina Boiss., Vicia michauxii Spreng., and Vicia sativa L. The species identification tests (TaxonDNA) offered approximately 90% correct assignments, but the All-Species Barcode provided only 56% of correct assignments, reflecting the loss of resolution of closely related taxa. Maximum Likelihood phylogenetic inference confirmed that most Iraqi accessions clustered with conspecific references from neighboring countries. However, the weak support for some lineages raised questions about the resolving power of ITS for assessing recently diverged or hybridizing taxa.

Generally, ITS barcodes were suitable for confirming the species identity and phylogenetic reconstruction of Iraqi Vicia but were insufficient to completely resolve the closely related lineages. This study provides the first molecular dataset for Vicia in Iraq and underscores the need for multilocus or genomic-scale approaches to solidify species delimitation and support regional plant genetic resource conservation.

References

  1. Aboul-Maaty, N.A.F. & Oraby, H.A.S. (2019) Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre 43 (1): 25. https://doi.org/10.1186/s42269-019-0066-1
  2. Al-Ghamdi, F. (2013) Morphological diversity of some Tephrosia species (Fabaceae) in Saudi Arabia. American Journal of Plant Sciences 4: 543–548. https://doi.org/10.4236/ajps.2013.43070
  3. Al-Hadeethi, M.A., Al-Rawi, A.A.F., Al-Taie, A.T. & Al-Zubaidi, A.H. (2019) Venation pattern and leaf architectures of Cordia myxa L. from Boraginaceae family. Biochemical and Cellular Archives 19 (2): 3709–3711.
  4. Al-Hadeethi, M.A., Al-Taie, A.T. & Al-Rawi, A. (2021) Anatomical study of Solanum nigrum L. from Solanaceae family growing in Iraq. IOP Conference Series: Earth and Environmental Science 1879 (2): 062065. https://doi.org/10.1088/1742-6596/1879/2/022003
  5. Al-Joboury, K. (2017) Taxonomical study for some species of Vicia L. (Fabaceae family). IOSR Journal of Agriculture and Veterinary Science 12: 61–64.
  6. Al-Rawi, A. (1988) Wild plants of Iraq with their distribution. Ministry of Agriculture and Irrigation, State Board for Agricultural and Water Resources Research, Baghdad, 208 pp.
  7. Al-Shuhaib, M.B.H. (2023) Improved DNA extraction protocol from frozen blood of patients who underwent systemic chemotherapy. Journal of Applied Biology and Research 10 (4): 1182–1190. https://doi.org/10.30491/jabr.2023.394461.1633
  8. Antil, S., Abraham, J.S., Sripoorna, S., Maurya, S., Dagar, J., Makhija, S. & Toteja, R. (2023) DNA barcoding, an effective tool for species identification: A review. Molecular Biology Reports 50 (1): 761–775. https://doi.org/10.1007/s11033-022-08015-7
  9. Avin, F.A., Subha, B., Tan, Y.S., Braukmann, T., Vikineswary, S. & Hebert, P.D.N. (2017) Escaping introns in COI through cDNA barcoding of mushrooms: Pleurotus as a test case. Ecology and Evolution 7 (17): 6972–6980. https://doi.org/10.1002/ece3.3049
  10. Ben Mahmoud, K., Mezzapesa, G.N., Abdelkefi, F. & Perrino, E.V. (2024) Nutritional value and functional properties of an underexploited Tunisian wild beet (Beta macrocarpa Guss.) in relation to soil characteristics. Euro-Mediterranean Journal for Environmental Integration 9: 705–720. https://doi.org/10.1007/s41207-024-00468-5
  11. Besse, P. (2014) Nuclear ribosomal RNA genes: ITS region. In: Besse, P. (Ed.) Molecular Plant Taxonomy: Methods and Protocols. Springer, New York, pp. 141–149. https://doi.org/10.1007/978-1-62703-767-9_7
  12. Besse, P., Da Silva, D. & Grisoni, M. (2021) Plant DNA barcoding principles and limits: A case study in the genus Vanilla. In: Besse, P. (Ed.) Molecular Plant Taxonomy: Methods and Protocols. Springer, New York, pp. 131–148. https://doi.org/10.1007/978-1-0716-0997-2_8
  13. Bosmali, I., Lagiotis, G., Haider, N., Osathanunkul, M., Biliaderis, C. & Madesis, P. (2022) DNA-based identification of Eurasian Vicia species using chloroplast and nuclear DNA barcodes. Plants 11 (7): 947. https://doi.org/10.3390/plants11070947
  14. Calabrese, G., Perrino, E.V., Ladisa, G., Aly, A., Tesfmichael Solomon, M., Mazdaric, S., Benedetti, A. & Ceglie, F.G. (2015) Short-term effects of different soil management practices on biodiversity and soil quality of Mediterranean ancient olive orchards. Organic Agriculture 5: 209–223. https://doi.org/10.1007/s13165-015-0120-8
  15. Cheng, T., Xu, C., Lei, L., Li, C., Zhang, Y. & Zhou, S. (2016) Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources 16 (1): 138–149. https://doi.org/10.1111/1755-0998.12438
  16. Chen, Y.X. & Zhou, X.H. (2024) Symbiotic nitrogen fixation: The role of rhizobia in enhancing legume growth and soil fertility. Molecular Microbiology Research 14 (2): 109–118. https://doi.org/10.5376/mmr.2024.14.0012
  17. Coyne, C.J., Kumar, S. & Von Wettberg, E.J.B. (2020) Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. Legume Science 2: e25. https://hdl.handle.net/20.500.11766/11072
  18. Cueto, M., Melendo, M., Gimenez, E., Fuentes, J., López-Carrique, E. & Blanca, G. (2018) First updated checklist of the vascular flora of Andalusia (S of Spain), one of the main biodiversity centres in the Mediterranean Basin. Phytotaxa 339 (1): 1–95. https://doi.org/10.11646/phytotaxa.339.1.1
  19. Doyle, J.J. & Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
  20. El Zein, H., Fois, M., Gori, B. & Bacchetta, G. (2025) Endemism patterns of the vascular flora of Lebanon: A dynamic checklist. PhytoKeys 260: 153. https://doi.org/10.3897/phytokeys.260.156938
  21. Fatah, H.U. (2003) The vascular plants of Haibat Sultan Mountain and the adjacent areas. MSc Thesis, University of Sulaimani, College of Science, pp. 69–72.
  22. Fazekas, A.J., Burgess, K.S., Kesanakurti, P.R., Graham, S.W., Newmaster, S.G., Husband, B.C., Percy, D.M., Hajibabaei, M. & Barrett, S.C.H. (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 3 (7): e2802. https://doi.org/10.1371/journal.pone.0002802
  23. Gascuel, O. & Lemoine, F. (2024) Measures of branch support in phylogenetics. In: Salemi, M., Vandamme, A.M. & Lemey, P. (Eds.) The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing (3rd edn). Cambridge University Press, Cambridge, pp. 213–235. https://doi.org/10.1002/9781394284252.ch9
  24. Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
  25. Han, S., Sebastin, R., Wang, X., Lee, K.J., Cho, G.T., Hyun, D.Y. & Chung, J.W. (2021) Identification of Vicia species native to South Korea using molecular and morphological characteristics. Frontiers in Plant Science 12: 635489. https://doi.org/10.3389/fpls.2021.608559
  26. Handel-Mazzetti, H.F. (1914) Die Vegetationsverhältnisse von Mesopotamien und Kurdistan. Annalen des Naturhistorischen Museums in Wien 28: 48–111.
  27. Hollingsworth, P.M. (2011) Refining the DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 108 (49): 19451–19452. https://doi.org/10.1073/pnas.1116812108
  28. Hugenholtz, P., Chuvochina, M., Oren, A., Parks, D.H. & Soo, R.M. (2021) Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME Journal 15 (7): 1879–1892. https://doi.org/10.1038/s41396-021-00941-x
  29. Ibáñez, S.G., Medina, M.I. & Agostini, E. (2020) Vicia: A green bridge to clean up polluted environments. Applied Microbiology and Biotechnology 104 (1): 13–21. https://doi.org/10.1007/s00253-019-10222-5
  30. Johnson, M.G., Pokorny, L., Dodsworth, S., Botigué, L.R., Cowan, R.S., Devault, A., Eiserhardt, W.L., Epitawalage, N., Forest, F., Kim, J.T., Leebens-Mack, J.H., Leitch, I.J., Maurin, O., Soltis, D.E., Soltis, P.S., Wong, G.K.-S., Baker, W.J. & Wickett, N.J. (2019) A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology 68 (4): 594–606. https://doi.org/10.1093/sysbio/syy086
  31. Khan, H.A. & Arif, I.A. (2013) COI barcodes and phylogeny of doves (Columbidae family). Mitochondrial DNA 24 (6): 689–696. https://doi.org/10.3109/19401736.2013.773319
  32. Kaplan, A., Ertekin, A.S. & Gündüzler, E. (2021) Molecular phylogenetic analysis of Vicia L. (Fabaceae) taxa growing in the Southeastern Anatolia region of Turkey: Based on internal transcribed spacer (ITS). Turkish Journal of Agriculture and Forestry 9 (10): 1831–1839. https://doi.org/10.24925/turjaf.v9i10.1831-1839.4226
  33. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35 (6): 1547–1549. https://doi.org/10.1093/molbev/msy096
  34. Letsiou, S., Madesis, P., Vasdekis, E., Montemurro, C., Grigoriou, M., Skavdis, G., Moussis, V., Koutelidakis, A.E. & Tzakos, A.G. (2023) DNA barcoding as a plant identification method. Preprints 2023120536. https://doi.org/10.20944/preprints202312.0536.v1
  35. Loera-Sánchez, M., Studer, B. & Kölliker, R. (2020) DNA barcode trnH-psbA is a promising candidate for efficient identification of forage legumes and grasses. BMC Research Notes 13: 35. https://doi.org/10.1186/s13104-020-4897-5
  36. Matczyszyn, J.N., Harris, T., Powers, K., Everhart, S.E. & Powers, T.O. (2022) Ecological and morphological differentiation among COI haplotype groups in the plant parasitic nematode species Mesocriconema xenoplax. Journal of Nematology 54 (1): e2022–0009. https://doi.org/10.2478/jofnem-2022-0009
  37. Meier, R., Shiyang, K., Vaidya, G. & Ng, P.K. (2006) DNA barcoding and taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Systematic Biology 55: 715–728. https://doi.org/10.1080/10635150600969864
  38. Mohamad, S.M. (2010) A comparative systematic study of genus Vicia L. (Family: Papilionaceae) in Iraqi Kurdistan. PhD Dissertation, University of Sulaimani, College of Agriculture, Department of Field Crops, 220 pp.
  39. Nam, B.M., Park, M.S., Oh, B.U. & Chung, G.Y. (2012) A cytotaxonomic study of Vicia L. (Fabaceae) in Korea. Korean Journal of Plant Taxonomy 42 (4): 307–315. https://doi.org/10.11110/kjpt.2012.42.4.307
  40. Okoth, P., Muoma, J., Emmanuel, M., Clabe, W., Omayio, D.O. & Ang’ienda, P.O. (2016) The potential of DNA barcode-based delineation using seven putative candidate loci of the plastid region in inferring molecular diversity of cowpea at sub-species level. American Journal of Molecular Biology 6 (4): 138–158. https://doi.org/10.4236/ajmb.2016.64014
  41. Perrino, E.V., Signorile, G. & Marvulli, M. (2013) A first checklist of the vascular flora of the Polignano a Mare coast (Apulia, southern Italy). Natura Croatica 22 (2): 295–318.
  42. Post, G.E. (1932) Flora of Syria, Palestine and Sinai, Vol. 1. American Press, Beirut, pp. 416–425.
  43. Raveendar, S., Lee, J.R., Park, J.W., Lee, G.A., Jeon, Y.A., Lee, Y.J., Cho, G.T., Ma, K.H., Lee, S.Y. & Chung, J.W. (2015) Potential use of ITS2 and matK as a two-locus DNA barcode for identification of Vicia species. Plant Breeding and Biotechnology 3 (1): 58–66. https://doi.org/10.9787/PBB.2015.3.1.058
  44. Raveendar, S., Lee, J.R., Shim, D., Lee, G.A., Jeon, Y.A., Cho, G.T., Ma, K.H., Lee, S.Y., Sung, G.H. & Chung, J.W. (2017) Comparative efficacy of four candidate DNA barcode regions for identification of Vicia species. Plant Genetic Resources 15 (4): 286–295. https://doi.org/10.1017/S1479262115000623
  45. Rechinger, K.H. (1964) Flora of Lowland Iraq. Weinheim, 746 pp.
  46. Rajput, A., Panhwar, Q.A. & Babar, H. (2024) Role of leguminous crops by enhancing soil fertility and plant nutrition. In: Soil Amendments for Sustainability. IntechOpen, London. https://doi.org/10.5772/intechopen.1006827
  47. Rather, S.A., Saina, J.K., Adit, A., Liu, H.-M., Chang, Z.-Y. & Schneider, H. (2023) DNA barcoding of recently diverging legume genera: Assessing the temperate Asian Caragana (Fabaceae: Papilionoideae). Journal of Systematics and Evolution 61: 1309–1326. https://doi.org/10.1111/jse.13009
  48. Rechinger, K.H. (1979) Flora Iranica. Papilionaceae I – Viciaeae. No. 140. Akademische Druck- und Verlagsanstalt, Graz, Austria, pp. 1–152.
  49. Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. & Sanchez-Gracia, A. (2017) DnaSP v6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolution 34: 3299–3302. https://doi.org/10.1093/molbev/msx248
  50. Salehi, B., Abu-Reidah, I.M., Sharopov, F., Karazhan, N., Sharifi-Rad, J., Akram, M., Daniyal, M., Khan, F.S., Abbaass, W., Zainab, R., Carbone, K., Fahmy, N.M., Al-Sayed, E., El-Shazly, M., Lucarini, M., Durazzo, A., Santini, A., Martorell, M. & Pezzani, R. (2021) Vicia plants – A comprehensive review on chemical composition and phytopharmacology. Phytotherapy Research 35 (2): 790–809. https://doi.org/10.1002/ptr.6863
  51. Shehbala, E.S. (2021) Molecular phylogeny of the genus Vicia L. (Fabaceae) based on ITS2 and COX1 housekeeping genes. MSc Thesis, University of Helsinki, Department of Agricultural Sciences, 30 pp.
  52. Shiran, B., Kiani, S., Sehgal, D., Hafizi, A., Chaudhary, M. & Raina, S.N. (2014) Internal transcribed spacer sequences of nuclear ribosomal DNA resolving complex taxonomic history in the genus Vicia L. Genetic Resources and Crop Evolution 61 (5): 909–925. https://doi.org/10.1007/s10722-014-0086-5
  53. Souza, H.V., Marchesin, S.R.C. & Itoyama, M.M. (2016) Analysis of the mitochondrial COI gene and its informative potential for evolutionary inferences in the families Coreidae and Pentatomidae (Heteroptera). Genetics and Molecular Research 15 (1): gmr15017428. https://doi.org/10.4238/gmr.15017428
  54. Tabur, S., Civelek, Ş. & Bağcı, E. (2002) Cytotaxonomic studies on some Vicia L. species growing in the eastern Mediterranean and southern Aegean regions II. Acta Botanica Hungarica 44 (1–2): 185–204. https://doi.org/10.1556/abot.44.2002.1-2.13
  55. Townsend, C.C. & Guest, E. (1974) Leguminales. In: Flora of Iraq, Vol. 3. Ministry of Agriculture and Agrarian Reform, Republic of Iraq, Baghdad, pp. 512–543.
  56. Van de Wouw, M., Maxted, N., Chabane, K. & Ford-Lloyd, B.V. (2001) Molecular taxonomy of Vicia ser. Vicia based on amplified fragment length polymorphisms. Plant Systematics and Evolution 229 (1): 91–105. https://doi.org/10.1007/s006060170020
  57. Vasconcelos, M., Grusak, M., Pinto, E., Gomes, A., Ferreira, H., Balazs, B., Centofanti, T., Ntatsi, G., Savvas, D., Karkanis, A., Williams, M., Vandenberg, A., Toma, L., Shrestha, S., Akaichi, F., Barrios, C.O., Gruber, S., James, E.K., Maluk, M. & Iannetta, P. (2020) The biology of legumes and their agronomic, economic, and social impact: Economic impact of legumes. In: Hasanuzzaman, M., Araujo, S. & Gill, S.S. (Eds.) The Plant Family Fabaceae: Ecophysiology and Biotechnology. Springer, Cham, pp. 3–25. https://doi.org/10.1007/978-981-15-4752-2
  58. Willis, K.J. (2017) State of the World’s Plants 2017. Royal Botanic Gardens, Kew, 96 pp.
  59. Welbaum, G.E. (2024) Family Fabaceae. In: Vegetable Production and Practices, 2nd edn. CABI, Wallingford, pp. 236–259. https://doi.org/10.1079/9781789243260.0013
  60. Wu, F.F., Gao, Q., Liu, F., Wang, Z., Wang, J. & Wang, X. (2020) DNA barcoding evaluation of Vicia (Fabaceae): Comparative efficacy of six universal barcode loci on abundant species. Journal of Systematics and Evolution 58 (1): 36–47. https://doi.org/10.1111/jse.12474
  61. Wu, F.F., Sun, W., Liu, F., Gao, Q., Jin, M., Liu, B. & Wang, X.G. (2021) Phylogenetic relationships in Vicia subgenus Vicilla (Fabaceae) based on combined evidence from DNA sequences. Legume Research 44 (8): 882–887. https://doi.org/10.18805/LR-618
  62. Zohary, M. (1946) The flora of Iraq and its phytogeographical subdivision. Bulletin of the Iraq Department of Agriculture 3: 1–108.

How to Cite

Al-Taie, A.T., Golparvar, A.R., Hasan, M.A. & Darbaghshahi, M.R.N. (2025) Molecular taxonomy of Vicia L. species (Fabaceae) from the mountainous regions of Iraqi Kurdistan based on ITS barcoding. Phytotaxa 726 (4): 259–271. https://doi.org/10.11646/phytotaxa.726.4.3