Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-05-08
Page range: 147-195
Abstract views: 175
PDF downloaded: 5

Morphotypes of chrysophycean stomatocysts from four peatlands in the Changbai Mountains, northeastern China

Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
Institute for Peat and Mire Research, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
chrysophcean biodiversity taxonomy Sphagnum peatlands temperate zone Algae

Abstract

The Changbai Mountains, recognized as one of the global biodiversity hotspots, remain underexplored in terms of chrysophycean stomatocysts, despite their rich biological diversity. This study investigated the diversity of chrysophycean stomatocysts in fifteen surface Sphagnum samples and thirteen peat core samples collected from Hani, Jinchuan, Gushantun and Yuanchi Peatlands of the Changbai Mountains, northeastern China. Sixty-eight morphotypes of stomatocysts were identified and described according to the International Statospore Working Group, with five new morphotypes. This is the first record of chrysophycean stomatocysts in the Changbai Mountains, highlighting rich morphotypes of stomatocysts in these temperate peatlands, and hence the results can improve our knowledge on the diversity of stomatocysts in the temperate monsoon regions and create a taxonomical basis for further stomatocyst-based environmental monitoring and paleoenvironmental studies.

References

  1. Adam, D.P. (1981) U.S. Geological Survey Open-File Report: Vol. 81-46. Scanning electron micrographs of modern and late Holocene chrysomonad cysts from Harden Lake Meadow, Yosemite National Park, California. U.S. Geological Survey. https://doi.org/10.3133/ofr8146
  2. Adam, D.P. & Mahood, A.D. (1981) Chrysophyte cysts as potential environmental indicators. Geological Society of America Bulletin 92 (11): 839–844. https://doi.org/10.1130/0016-7606(1981)922.0.CO;2
  3. Adam, D.P. & Mahood, A.D. (1979) U.S. Geological Survey, Open-File Report: Vol. 79-1461. Modern and Holocene chrysomonad cysts from Upper Echo Lake, El Dorado County, California. U.S. Geological Survey http://doi.org/10.3133/ofr791461
  4. Adam, D.P. & Mehringer, P.J. (1980) U.S. Geological Survey, Open-File Report: Vol. 80-1249. Scanning electron micrographs of modern and Holocene chrysomonad cysts from Fish Lake, Steens Mountains, Oregon. U.S. Geological Survey. http://doi.org/10.3133/ofr801249
  5. Adam, D.P. & Mehringer, P.J. (1980) U.S. Geological Survey Open-File Report: Vol. 80-1231. Scanning electron micrographs of modern chrysomonad cysts from Castor Pond, Jemez Mountains, New Mexico. U.S. Geological Survey. http://doi.org/10.3133/ofr801231
  6. Bai, X., Bu, Z.J. & Chen, X. (2018) Morphology of Chrysophycean stomatocysts in three peatlands in central China. Mires and Peat 21 (19): 1–16. https://doi.org/10.19189/MaP.2018.OMB.350
  7. Bai, X., Piątek, J., Wołowski, K., Bu, Z. & Chen, X. (2020) New stomatocysts discovered in Sphagnum peatlands, central China. Phytotaxa 477 (2): 151–170. https://doi.org/10.11646/phytotaxa.477.2.2
  8. Bai, X. & Chen, X. (2022) Applications of chrysophyte stomatocysts in studies of aquatic environmental change. Progress in Geography 41 (2): 351–360. https://doi.org/10.18306/dlkxjz.2022.02.014
  9. Bai, X., Piątek, J., Wołowski, K., Bu, Z.J. & Chen, X. (2021) Chrysophyte stomatocysts and their associations with environmental variables in three peatlands in the subtropical monsoon climate zone of China. Ecological Indicators 121: 107125. https://doi.org/10.1016/j.ecolind.2020.107125
  10. Bai, X., Piątek, J., Wołowski, K., Yang, T. & Chen, X. (2023) Sedimentary chrysophycean stomatocysts from an alpine lake in the Three Gorge Reservoir region, central China. Nova Hedwigia 116 (3–4): 193–230. https://doi.org/10.1127/nova_hedwigia/2023/0821
  11. Battarbee, R.W., Jones, V.J. & Flower, R.J. (2001) Tracking Environmental Change Using Lake Sediments. Diatoms. Kluwer, Dordrecht, pp. 155–202. https://doi.org/10.1007/0-306-47668-1-5
  12. Bazhenova, O.P. (2021) Atlas of stomatocysts of golden algae from the plankton of the Omsk Priirtyshye waterbodies. Omsk, 122 pp.
  13. Bazhenova, O.P. & Igoshkina, I.Y. (2020) Diversity and Peculiarities of the Formation of Stomatocysts of the Chrysophyceae in a Waterbody in the South of Western Siberia. Inland Water Biology 13 (4): 556–565. https://doi.org/10.1134/s1995082920030049
  14. Bazhenova, O.P. & Kapustin, D.A. (2021) New chrysophycean stomatocysts (Chrysophyceae) for Russia from the Omsk Priirtyshye waterbodies. Новости систематики низших растений 55 (1): 7–18. https://doi.org/10.31111/nsnr/2021.55.1.7
  15. Bessudova, A.Y.S.L. (2019) Stomatocyst diversity in the first years of the plankton species structure formation in Reservoir of Hydropower Plants (Boguchany Reservoir, Russia). Phytotaxa 424 (1): 18–32. https://doi.org/10.11646/phytotaxa.424.1.2
  16. Bessudova, A.Y. & Firsova, A.D. (2022) Silica scaled Protista and Stomatocysts in East Siberia. Limnology and Freshwater Biology 5: 1663–1670. https://doi.org/10.31951/2658-3518-2022-a-5-1663
  17. Bessudova, A., Likhoshway, Y., Firsova, A., Mitrofanova, E., Koveshnikov, M., Soromotin, A. & Kirillov, V. (2023) Small Organisms in a Large River: What Provides the High Diversity of Scaled Chrysophytes in the Ob River? Water 15 (17): 3054. https://doi.org/10.3390/w15173054
  18. Betts-Piper, A.M., Zeeb, B.A. & Smol, J.P. (2004) Distribution and autecology of chrysophyte cysts from high Arctic Svalbard lakes: preliminary evidence of recent environmental change. Journal of Paleolimnology 31 (4): 467–481. https://doi.org/10.1023/B:JOPL.0000022546.21996.41
  19. Bonomo, M., Zucol, A.F., Gutiérrez Téllez, B., Coradeghini, A. & Vigna, M.S. (2009) Late Holocene palaeoenvironments of the Nutria Mansa 1 archaeological site, Argentina. Journal of Paleolimnology 41: 273–296. https://doi.org/10.1007/s10933-008-9225-3
  20. Brown, K.M., Douglas, M.S. & Smol, J.P. (1994) Siliceous microfossils in a Holocene, High Arctic peat deposit (Nordvestø, northwestern Greenland). Canadian Journal of Botany 72 (2): 208–216. https://doi.org/10.1139/b94-029
  21. Brown, K.M., Zeeb, B.A., Smol, J.P. & Pienitz, R. (1997) Taxonomic and ecological characterization of chrysophyte stomatocysts from northwestern Canada. Canadian Journal of Botany 75 (5): 842–863. https://doi.org/10.1139/b97-094
  22. Buczkó, K. & Wojtal, A. (2005) Moss inhabiting siliceous algae from Hungarian peat bogs. Studia Botanica Hungarica 36: 21–42.
  23. Cabała, J. (2002) Chrysophyceae stomatocysts from Budzyn peat bog [Krakow-Czestochowa Upland, Poland]. Polish Botanical Journal 47 (1): 21–35.
  24. Cabała, J. (2005) Chrysophyte stomatocysts from Staw Toporowy Wyżni peat bog in the Tatra National Park, Poland. Algological Studies 116 (1): 129–146. https://doi.org/10.1127/1864-1318/2005/0116-0129
  25. Cabała, J. & Piątek, M. (2004) Chrysophycean stomatocysts from the Staw Toporowy Niżni lake (Tatra National Park, Poland). Annales de limnologie-international Journal of limnology 40: 149–165. https://doi.org/10.1051/limn/2004013
  26. Casa, V., Quiroga, M.V., Van De Vijver, B. & Mataloni, G. (2024) The Ecology of Diatoms in Peatlands: Communities from Tierra del Fuego Peat Bogs as a Study Case. Diatom Ecology: From Molecules to Metacommunities 12: 393–419. https://doi.org/10.1002/9781394174898.ch12
  27. Chen, X., Mcgowan, S., Bu, Z., Huang, X., Bai, X., Zhang, Y. & Li, J. (2022) Diatom-inferred microtopography formation in peatlands. Earth Surface Processes and Landforms 47 (2): 672–687. https://doi.org/10.1002/esp.5280
  28. Coradeghini, A.V. & Vigna, M.S. (2008) The aerial epiphytic stomatocyst flora (Chrysophyceae and Synurophyceae) of mosses from Primavera Station, Antarctica. Nova Hedwigia 86 (3–4): 401–417. https://doi.org/10.1127/0029-5035/2008/0086-0401
  29. Coradeghini, A. & Vigna, M.S. (2001) Fossil flora of chrysophycean cysts from recent sediments of Mallin Book, Rio Negro (Argentina). Revista Española de Micropaleontología 33 (2): 163–182.
  30. Cronberg, G. & Sandgren, C.D. (1986) A proposal for the development of standardized nomenclature and terminology for chrysophycean statospores. In: Kristiansen, J. & Andersen, R.A. (Eds.) Chrysophytes: Aspects and Problems. pp. 317–328.
  31. De Jong, R. & Kamenik, C. (2011) Validation of a chrysophyte stomatocyst‐based cold‐season climate reconstruction from high‐Alpine Lake Silvaplana, Switzerland. Journal of Quaternary Science 26 (3): 268–275. https://doi.org/10.1002/jqs.1451
  32. Duff, K.E., Douglas, M.S. & Smol, J.P. (1992) Chrysophyte cysts in 36 Canadian high arctic ponds. Nordic Journal of Botany 12 (4): 471–499. https://doi.org/10.1111/j.1756-1051.1992.tb01331.x
  33. Duff, K.E. & Smol, J.P. (1988) Chrysophycean stomatocysts from the postglacial sediments of a High Arctic Lake. Canadian Journal of Botany 66 (6): 1117–1128. https://doi.org/10.1139/b88-160
  34. Duff, K.E. & Smol, J.P. (1989) Chrysophycean stomatocysts from the postglacial sediments of Tasikutaaq Lake, Baffin Island, NWT. Canadian Journal of Botany 67 (6): 1649–1656. https://doi.org/10.1139/b89-208
  35. Duff, K.E. & Smol, J.P. (1991) Morphological descriptions and stratigraphic distributions of the chrysophycean stomatocysts from a recently acidified lake (Adirondack Park, NY). Journal of Paleolimnology 5 (1): 73–113. https://doi.org/10.1007/BF00226558
  36. Duff, K.E. & Smol, J.P. (1994) Chrysophycean cyst flora from British Columbia (Canada) lakes. Nova Hedwigia 58 (3–4): 353–389.
  37. Duff, K.E. & Smol, J.P. (1995) Chrysophycean cyst assemblages and their relationship to water chemistry in 71 Adirondack Park (New York, USA) lakes. Archiv für Hydrobiologie 134 (3): 307–336. https://doi.org/10.1127/archiv-hydrobiol/134/1995/307
  38. Duff, K., Zeeb, B.A. & Smol, J.P. (1995) Atlas of chrysophycean cysts. Kluwer Academic Publishers, Dordrecht. https://doi.org/10.1007/978-94-017-0809-8
  39. Facher, E. & Schmidt, R. (1996a) A siliceous chrysophycean cyst-based pH transfer function for Central European lakes. Journal of Paleolimnology 16: 275–321. https://doi.org/10.1007/BF00207575
  40. Facher, E. & Schmidt, R. (1996b) Application of chrysophyte sediment trap data and a cyst-based pH transfer function to annually laminated sediments (Lake Plesne, Bohemia, Czech Republic). Beihefte zur Nova Hedwigia 114: 219–232.
  41. Firsova, A.D., Bessudova, A.Y., Likhoshway, Y.V. & Kopyrina, L.I. (2020) Chrysophycean stomatocysts from two unique lakes of Yakutia (Russia). Phytotaxa 474 (3): 197–217. https://doi.org/10.11646/phytotaxa.474.3.1
  42. Firsova, A.D., Bessudova, A.Y., Sorokovikova, L.M., Zhychenko, N.A., Istomina, N.A., Sezko, N.P. & Likhoshway, Y.V. (2019) Stomatocyst diversity in the first years of the plankton species structure formation in Reservoir of Hydropower Plants (Boguchany Reservoir, Russia). Phytotaxa 424 (1): 18–32. https://doi.org/10.11646/phytotaxa.424.1.2
  43. Firsova, A.D., Bessudova, A.Y. & Likhoshway, Y.V. (2018) Chrysophycean stomatosysts in tributaries of northern limit of Lake Baikal. Acta Biologica Sibirica 4 (4): 25–44.
  44. Firsova, A., Bessudova, A. & Likhoshway, Y. (2017) New data of chrysophycean stomatocysts from Lake Baikal. Acta Biologica Sibirica 3: 113. https://doi.org/10.14258/abs.v3i4.3637
  45. Firsova, A.D., Kuzmina, A.E., Tomberg, I.V., Potemkina, T.G. & Likhoshway, Y.V. (2008) Seasonal dynamics of chrysophyte stomatocyst formation in the plankton of Southern Baikal. Biology Bulletin 35 (5): 507–514. https://doi.org/10.1134/S1062359008050129
  46. Gilbert, S., Zeeb, B.A. & Smol, J.P. (1997) Chrysophyte stomatocyst flora from a forest peat core in the Lena River Region, northeastern Siberia. Nova Hedwigia 64 (3–4): 311–352. https://doi.org/10.1127/nova.hedwigia/64/1997/311
  47. Gritten, M. (1977) On the fine structure of some chrysophycean cysts. Hydrobiologia 53: 239–252. https://doi.org/10.1007/BF00818546
  48. Hansen, P. (2001) Chrysophyte stomatocysts in the Azores: biogeographical implications and 110 new morphotypes. Opera botanica 138: 1–96.
  49. Hilliard, D.K. & Asmund, B. (1963) Studies on Chrysophyceae from Some Ponds and Lakes in Alaska: Notes on the Genera Dinobryon, Hyalobryon and Epipyxis with Descriptions of New Species. II. Hydrobiologia 22: 331–397. https://doi.org/10.1007/BF00036430
  50. Huber, K., Kamenik, C., Weckström, K. & Schmidt, R. (2009) Taxonomy, stratigraphy, and pal-aeoecology of chrysophyte cysts from a Late Glacial sediment core section of Längsee, Austria. Nova Hedwigia 89 (1–2): 245–261. https://doi.org/10.1127/0029-5035/2009/0089-0245
  51. Ignatenko, M., Yatsenko-Stepanova, T.N. & Kapustin, D. (2022) Additions to chrysophycean stomatocyst flora from South Urals shallow lake including descriptions of three new morphotypes. Phytotaxa 561 (1): 14–26. https://doi.org/10.11646/phytotaxa.561.1.2
  52. Ignatenko, M.E. & Yatsenko-Stepanova, T.N. (2023) Сhrysophycean stomatocysts (Сhrysophyta) in the reservoirs of the Buzulukskii Bor National Park (Southeastern European part of Russia). Botanicheskii Zhurnal 108 (7): 617–627. https://doi.org/10.31857/S0006813623070025
  53. Jasinski, J., Warner, B.G., Andreev, A.A., Aravena, R., Gilbert, S.E., Zeeb, B.A. & Velichko, A.A. (1998) Holocene environmental history of a peatland in the Lena River valley, Siberia. Canadian Journal of Earth Sciences 35 (6): 637–648. https://doi.org/10.1139/cjes-35-6-637
  54. Kamenik, C., Schmidt, R., Koinig, K.A., Agustí-Panareda, A., Thompson, R. & Psenner, R. (2001) The chrysophyte stomatocyst composition in a high alpine lake (Gossenkollesee, Tyrol, Austria) in relation to seasonality, temperature and land-use. Nova Hedwigia Beiheft 122: 1–22.
  55. Kapustin, D., Sterlyagova, I. & Patova, E. (2019) Morphology of Chrysastrella paradoxa stomatocysts from the Subpolar Urals (Russia) with comments on related morphotypes. Phytotaxa 402 (6): 295–300. https://doi.org/10.11646/phytotaxa.402.6.4
  56. Kapustin, D. & Kulikovskiy, M. (2023) Sphagnum-associated chrysophytes from the” Dermansko-Ostrozsky” National Nature Park (Ukraine). Mires and Peat 29 (22): 8. https://doi.org/10.19189/MaP.2023.OMB.Sc.2111526
  57. Korkonen, S., Weckström, J. & Korhola, A. (2020) Biogeography and ecology of freshwater chrysophyte cysts in Finland. Hydrobiologia 847 (2): 487–499. https://doi.org/10.1007/s10750-019-04112-0
  58. Kristiansen, J.R. (1986) Silica-scale bearing chrysophytes as environmental indicators. British Phycological Journal 21 (4): 425–436. https://doi.org/10.1080/00071618600650491
  59. Lang, H., Zhao, K. & Chen, K. (1999) Wetland vegetation in China. Science Press, Beijing.
  60. Li, J., Bu, Z., Huang, X., Zeng, L. & Chen, X. (2023) The effects of environmental, climatic and spatial factors on diatom diversity in Sphagnum peatlands in central and northeastern China. Hydrobiologia 850 (3): 565–575. https://doi.org/10.1007/s10750-022-05100-7
  61. Li, Y., Liu, Q., Pan, Y. & Pang, W. (2024) Altitude-driven variations in chrysophycean stomatocyst assemblages: Implications for climate reconstructions in the Three Parallel Rivers of Yunnan Protected Area, China. Ecological Indicators 167: 112729. https://doi.org/10.1016/j.ecolind.2024.112729
  62. Ma, M., Wei, C., Huang, W., He, Y., Gong, Y. & Hu, Q. (2023) A systematic review of the predatory contaminant Poterioochromonas in microalgal culture. Journal of Applied Phycology 35 (3): 1103–1114. https://doi.org/10.1007/s10811-023-02941-0
  63. Pang, W. & Van De Vijver, B. (2021) Freshwater chrysophycean stomatocysts from the Monte Lauro (Buccheri, Sicily, Italy). Phytotaxa 492 (2): 177–192. https://doi.org/10.11646/phytotaxa.494.2.1
  64. Pang, W., Van De Vijver, B., Wu, H. & Li, Y. (2022) New chrysophyte stomatocysts from high mountain lakes in Three Parallel Rivers of Yunnan Protected Areas, China. Fottea 22 (2): 228–237. https://doi.org/10.5507/fot.2022.004
  65. Pang, W., Wang, Y. & Wang, Q. (2012) Six new chrysophycean stomatocysts ornamented with reticulum from the Great Xing’an Mountains, China. Chinese Journal of Oceanology and Limnology 30 (3): 410–412. https://doi.org/10.1007/s00343-012-1164-1
  66. Pang, W. & Wang, Q. (2013) Chrysophycean stomatocysts from the stone ponds in the Aershan National Geological Park, China. Nova Hedwigia Beiheft 142: 51–67.
  67. Pang, W. & Wang, Q. (2014) Chrysophycean stomatocysts from the Aershan geological park (Inner Mongolia), China. Phytotaxa 187 (1): 1–92. https://doi.org/10.11646/phytotaxa.187.1.1
  68. Pang, W. & Wang, Q. (2016) Chrysophycean stomatocysts from Xinjiang Province, China. Phytotaxa 288 (1): 41–50. https://doi.org/10.11646/phytotaxa.288.1.4
  69. Pang, W. & Wang, Q. (2017) Chrysophycean stomatocysts from the da hinggan Mountains. Science Press, Beijing. [in Chinese]
  70. Paterson, A.M., Betts-Piper, A.A., Smol, J.P. & Zeeb, B.A. (2003) Diatom and chrysophyte algal response to long-term PCB contamination from a point-source in northern Labrador, Canada. Water, Air, and Soil Pollution 145: 377–393. https://doi.org/10.1023/A:1023654105342
  71. Piątek, J. (2005) New and rare chrysophycean stomatocysts from the bryophyte spring in the Tatra National Park, Poland. Polish Botanical Journal 50 (2): 107–116.
  72. Piątek, J. (2007) Chrysophyte stomatocysts from sediments in a man-made water reservoir in central Poland. Annales Botanici Fennici 44: 186–193.
  73. Piątek, J. (2017) A morphotype-rich assemblage of chrysophycean stomatocysts in mountain lakes in the Cameroon Highlands, Africa. Cryptogamie, Algologie 38 (2): 159–180. https://doi.org/10.7872/crya/v38.iss2.2017.159
  74. Piątek, J., Lenarczyk, J. & Piątek, M. (2020) Assessing morphological congruence in Dinobryon species and their stomatocysts, including a newly established Dinobryon pediforme-stomatocyst connection. Scientific Reports 10 (1): 9779. https://doi.org/10.1038/s41598-020-65997-9
  75. Piątek, J., Piątek, M., Zeeb, B.A. & El Shahed, A. (2009) Chrysophyte stomatocysts in Africa: the first description of an assemblage in the recent sediments of a thermo-mineral spring in Egypt. Phycologia 48 (1): 13–23. https://doi.org/10.2216/08-50.1
  76. Piątek, J. & Piątek, M. (2005) Chrysophyte stomatocysts of the sulphuric salt marsh in the Owczary Reserve (central Poland). Polish Botanical Journal 50 (1): 97–106.
  77. Piątek, J. & Piątek, M. (2008) Chrysophyte stomatocysts from gypsum damp vegetation in southern Poland. Polish Botanical Journal 53 (1): 57–67.
  78. Pienitz, R., Walker, I.R., Zeeb, B.A., Smol, J.P. & Leavitt, P.R. (1992) Biomonitoring past salinity changes in an athalassic subarctic lake. International Journal of Salt Lake Research 1: 91–123. https://doi.org/10.1007/BF02904364
  79. Pla, S. (2001) Chrysophycean cysts from the Pyrenees. Borntraeger Gebrueder, Berlin.
  80. Pla, S., Camarero, L. & Catalan, J. (2003) Chrysophyte cyst relationships to water chemistry in Pyrenean lakes (NE Spain) and their potential for environmental reconstruction. Journal of Paleolimnology 30: 21–34. https://doi.org/10.1023/A:1024771619977
  81. Pla, S. & Anderson, N.J. (2005) Environmental factors correlated with chrysophyte cyst assem-blages in low arctic lakes of southwest Greenland. Journal of Phycology 41 (5): 957–974. https://doi.org/10.1111/j.1529-8817.2005.00131.x
  82. Pla, S. & Catalan, J. (2005) Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Climate Dynamics 24: 263–278. https://doi.org/10.1007/s00382-004-0482-1
  83. Płachno, B.J. & Wołowski, K. (2008) Algae commensal community in Genlisea traps. Acta Societatis Botanicorum Poloniae 77 (1): 77–86. https://doi.org/10.5586/asbp.2008.011
  84. Qiao, S. (1993) A preliminary study on Hani Peat-Mire in the west part of the Changbai Mountain. Scientia Geographica Sinica 13 (3): 279–287. https://doi.org/10.13249/j.cnki.sgs.1993.03.279
  85. Rull, V. & Vegas-Vilarrúbia, T. (2000) Chrysophycean stomatocysts in a Caribbean mangrove. Hydrobiologia 428 (1): 145–150. https://doi.org/10.1023/a:1003967432654
  86. Rybak, M. (1987) Fossil chrysophycean cyst flora of Racze Lake, Wolin Island (Poland) in relation to paleoenvironmental conditions. Hydrobiologia 150 (3): 257–272. https://doi.org/10.1007/BF00008707
  87. Rybak, M., Rybak, I. & Dickman, M. (1987) Fossil chrysophycean cyst flora in a small meromictic lake in southern Ontario, and its paleoecological interpretation. Canadian Journal of Botany 65 (11): 2425–2440. https://doi.org/10.1139/b87-330
  88. Rybak, M., Rybak, I. & Nicholls, K. (1991) Sedimentary chrysophycean cysts as paleoindicators in acid sensitive lakes. Journal of Paleolimnology 5 (1): 19–72. https://doi.org/10.1007/BF00226557
  89. Sandgren, C.D. & Carney, H.J. (1983) Flora of fossil chrysophycean cysts from the recent sediments of Frains Lake, Michigan, USA. Nova Hedwigia: Zeitschrift fur Kryptogamenkunde 38: 129–163.
  90. Shadrina, S.N. & Safronova, T.V. (2024) Diversity of chrysophycean stomatocysts (Chrysophyta) in Kader mire of the Kurgalsky Natural Reserve. Botanicheskii Zhurnal 109 (3): 244–257. https://doi.org/10.31857/S0006813624030027
  91. Shadrina, S.N. (2019) Diversity of chrysophycean (Chrysophyta) stomatocysts in the Gulf of Finland, Baltic Sea. Botanicheskii zhurnal 104 (5): 684–698. https://doi.org/10.1134/S0006813619050120
  92. Shadrina, S.N. & Safronova, T. (2020) Chrysophycean stomatocysts (Chrysophyta) in the algal flora of the Peterhof Parks. Voprosy Istorii 3: 253–262.
  93. Siver, P.A. (1991) The stomatocyst of Mallomonas acaroides v. muskokana (Chrysophyceae). Journal of Paleolimnology 5: 11–17. https://doi.org/10.1007/bf00226556
  94. Snit’ Ko, L.V. & Snit’ Ko, V.P. (2024) Diversity of Stomatocysts of Golden Algae (Chrysophyceae) from the Plankton of Reservoirs of the Mountain Forest Zone of the Southern Urals. Inland Water Biology 17 (4): 543–559. https://doi.org/10.1134/s1995082924700196
  95. Soróczki-Pintér, É.P.S.M. (2014) Late Quaternary Chrysophycean stomatocysts in a Southern Carpathian Mountain Lake, including the description of new forms (Romania). Phytotaxa 170 (3): 169–186. https://doi.org/10.11646/phytotaxa.170.3.3
  96. Stewart, K., Gregory Eaves, I., Zeeb, B.A. & Smol, J.P. (2000) Covariation among Alaskan chrysophyte stomatocyst assemblages and environmental gradients: A comparison with diatom assemblages. Nordic Journal of Botany 20 (3): 357–368. https://doi.org/10.1111/j.1756-1051.2000.tb00750.x
  97. Szeicz, J.M., Zeeb, B.A., Bennett, K.D. & Smol, J.P. (1998) High-resolution paleoecological analysis of recent disturbance in a southern Chilean Nothofagus Forest. Journal of Paleolimnology 20: 235–252. https://doi.org/10.1023/A:1007950905200
  98. Van De Vijver, B. & Beyens, L. (1997a) The subfossil chrysophyte cyst flora of some peat samples from Kerguelen Islands. Archiv für Protistenkunde 148 (4): 491–503. https://doi.org/10.1016/S0003-9365(97)80024-3
  99. Van De Vijver, B. & Beyens, L. (1997b) The Chrysophyte stomatocyst flora of the moss vegetation from Strømness Bay Area, South Georgia. Archiv für Protistenkunde 148 (4): 505–520. https://doi.org/10.1016/S0003-9365(97)80026-7
  100. Van De Vijver, B. & Beyens, L. (2000) Chrysophycean stomatocysts from freshwater habitats of the Strømness Bay area, South Georgia, Antarctica. Canadian Journal of Botany 78 (1): 88–97. https://doi.org/10.1139/b99-165
  101. Vanlandingham, S.L. (1964) Chrysophyta cysts from the Yakima Basalt (Miocene) in south-central Washington. Journal of Paleontology 38 (4): 729–739.
  102. Vilaclara, G., Cuna, E. & Zeeb, B. (2005) Subfossil chrysophyte cyst morphotypes from two tropical, high-mountain lakes in Nevado de Toluca volcano, Central Mexico. Nova Hedwigia Beiheft 128: 309–335.
  103. Vorobyova, S.S., Pomazkina, G.V., Baranova, E.Y., Likhoshway, Y.V. & Sandgren, C.D. (1996) Chrysophycean cysts (stomatocysts) from lake Baikal and Irkutsk Reservoir, Siberia. Journal of Paleolimnology 15: 271–277.
  104. Wilkinson, Zeeb, B.A. & Smol, J.P. (2001) Atlas of chrysophycean cysts Ⅱ. Kluwer Academic Publishers, Dordrecht. https://doi.org/10.1007/978-94-017-0811-1
  105. Wilkinson, A.N., Zeeb, B.A., Smol, J.P. & Douglas, M.S. (1997) Chrysophyte stomatocyst assemblages associated with periphytic, high arctic pond environments. Nordic Journal of Botany 17 (1): 95–112. https://doi.org/10.1111/j.1756-1051.1997.tb00293.x
  106. Wołowski, K., Cabała, J. & Zeeb, B.A. (2004) Chrysophycean stomatocysts from a karstic sink-hole in the vicinity of Staszów on the Małopolska Upland, Poland. Canadian Journal of Botany 82 (9): 1330–1337. https://doi.org/10.1139/b04-089
  107. Wołowski, K., Piątek, J. & Płachno, B.J. (2013) Chrysophycean stomatocysts associated with the carnivorous plants (Utricularia) from Jeleniak-Mikuliny Nature Reserve. Oceanological and Hydrobiological Studies 42 (4): 398–405. https://doi.org/10.2478/s13545-013-0095-6
  108. Wołowski, K., Piątek, J. & Płachno, B. (2011) Algae and stomatocysts associated with carnivorous plants. First report of chrysophyte stomatocysts from Virginia, USA. Phycologia 50 (5): 511–519. https://doi.org/10.2216/10-94.1
  109. Xing, W., Bao, K., Gallego-Sala, A.V., Charman, D.J., Zhang, Z., Gao, C. & Wang, G. (2015) Climate controls on carbon accumulation in peatlands of Northeast China. Quaternary Science Reviews 115: 78–88. https://doi.org/10.1016/j.quascirev.2015.03.005
  110. Xu, S., Huang, B., Zeng, L., Bu, Z., Huang, X. & Chen, X. (2024) Diatom cell-size composition as a novel tool for quantitative estimates of the water table in peatlands. Biology Letters 20 (6): 20240062. https://doi.org/10.1098/rsbl.2024.0062
  111. Yang, X. & Xu, M. (2003) Biodiversity conservation in Changbai Mountain Biosphere Reserve, northeastern China: status, problem, and strategy. Biodiversity & Conservation 12: 883–903. https://doi.org/10.1023/A:1022841107685
  112. Zeeb, B.A., Christie, C.E., Smol, J.P., Findlay, D.L., Kling, H.J. & Birks, H. (1994) Responses of diatom and chrysophyte assemblages in Lake 227 sediments to experimental eutrophication. Canadian Journal of Fisheries and Aquatic Sciences 51 (10): 2300–2311. https://doi.org/10.1139/f94-233
  113. Zeeb, B.A., Duff, K.E. & Smol, J.P. (1990) Morphological descriptions and stratigraphic profiles of chrysophycean stomatocysts from the recent sediments of Little Round Lake, Ontario. Nova Hedwigia 51 (3–4): 361–380. https://doi.org/10.2307/1485985
  114. Zeeb, B.A., Smol, J.P. & Vanlandingham, S.L. (1996) Pliocene chrysophycean stomatocysts from the Sonoma volcanics, Napa County, California. Micropaleontology 42 (1): 79–91. https://doi.org/10.2307/1485985
  115. Zeeb, B.A. & Smol, J.P. (1993) Chrysophycean stomatocyst flora from Elk Lake, Clearwater County, Minnesota. Canadian Journal of Botany 71 (5): 737–756. https://doi.org/10.1139/b93-086
  116. Zeeb, B.A. & Smol, J.P. (1995) A weighted-averaging regression and calibration model for inferring lakewater salinity using chrysophycean stomatocysts from lakes in western Canada. International Journal of Salt Lake Research 4: 1–23. https://doi.org/10.1007/BF01992411
  117. Zhang, M., Bu, Z., Jiang, M., Wang, S., Liu, S., Jin, Q. & Shi, P. (2019) Mid-late Holocene maar lake-mire transition in northeast China triggered by hydroclimatic variability. Quaternary Science Reviews 220 (15): 215–229. https://doi.org/10.1016/j.quascirev.2019.07.027
  118. Zhao, K. (1999) Mires in China. Science Press, Beijing.

How to Cite

Qiao, S., Bai, X., Piątek, J., Wołowski, K., Bu, Z.J. & Chen, X. (2025) Morphotypes of chrysophycean stomatocysts from four peatlands in the Changbai Mountains, northeastern China. Phytotaxa 700 (2): 147–195. https://doi.org/10.11646/phytotaxa.700.2.2