Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-04-22
Page range: 43-50
Abstract views: 185
PDF downloaded: 5

Another acidophilic corticolous species of Trichia (Myxomycetes) from Réunion Island

Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, 197022
University of Arkansas, Fayetteville, USA, 72701
Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, 197022
Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, 197022
Amoebozoa morphology new species phylogeny revision SEM Fungi

Abstract

A new species of bright-spored myxomycete, Trichia insularis, is described in detail and illustrated with light and scanning electron microscope photographs. This species appeared in a moist chamber culture on the acidic bark of Cryptomeria japonica collected in 2006 on La Réunion Island in the Indian Ocean. The species is part of a complex of closely related species of Trichia that includes T. acetocorticola, T. nubila, and T. pinicola. All of these share the distinctive secondary ornamentation of the capillitial threads that consists of longitudinal thin ridges. However, Trichia insularis differs from all previously described species of Trichia by a unique combination of morphological characters and it also has unique substitutions in its nrSSU, EF1α and mtSSU sequences.

References

  1. Adamonyte, G., Stephenson, S.L., Michaud, A., Seraoui, E.H., Meyer, M., Novozhilov, Yu.K. & Krivomaz, T. (2011) Myxomycete species diversity on the island of La Réunion (Indian Ocean). Nova Hedwigia 92: 523–549. https://doi.org/10.1127/0029-5035/2011/0092-0523
  2. Bortnikov, F.M., Bortnikova, N.A., Gmoshinskiy, V.I., Prikhodko, I.S. & Novozhilov, Yu.K. (2023) Additions to Trichia botrytis complex (Myxomycetes): 9 new species. Botanica Pacifica 12: 81–119. https://doi.org/10.17581/bp.2023.12s03
  3. Feng, Y. & Schnittler, M. (2015) Sex or no sex? Group I introns and independent marker genes reveal the existence of three sexual but reproductively isolated biospecies in Trichia varia (Myxomycetes). Organisms Diversity & Evolution 15 (4): 631–650. https://doi.org/10.1007/s13127-015-0230-x
  4. Fiore-Donno, A.M., Nikolaev, S.I., Nelson, M., Pawlowski, J., Cavalier-Smith, T. & Baldauf, S.L. (2010) Deep phylogeny and evolution of slime moulds (Mycetozoa). Protist 161 (1): 55–70. https://doi.org/10.1016/j.protis.2009.05.002
  5. Fiore-Donno, A.M., Clissmann, F., Meyer, M., Schnittler, M. & Cavalier-Smith, T. (2013) Two-gene phylogeny of bright-spored Myxomycetes (slime moulds, superorder Lucisporidia). PLoS ONE 8 (5): e62586. https://doi.org/10.1371/journal.pone.0062586
  6. García-Martín, J.M., Zamora, J.C. & Lado, C. (2023) Multigene phylogeny of the order Physarales (Myxomycetes, Amoebozoa): shedding light on the dark-spored clade. Persoonia 51: 89–124. https://doi.org/10.3767/persoonia.2023.51.02
  7. Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35 (2): 518–522. https://doi.org/10.1093/molbev/msx281
  8. Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17 (8): 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
  9. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285
  10. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010
  11. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20 (4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  12. Lado, C., Treviño-Zevallos, I., García-Martín, J.M. & Wrigley de Basanta, D. (2022) Diachea mitchellii: a new myxomycete species from high elevation forests in the tropical Andes of Peru. Mycologia 114 (4): 798–811. https://doi.org/10.1080/00275514.2022.2072140
  13. Leontyev, D., Ishchenko, Yu. & Schnittler, M. (2023) Fifteen new species from the myxomycete genus Lycogala. Mycologia 115: 524–560. https://doi.org/10.1080/00275514.2023.2199109
  14. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing environments Workshop (GCe). IEEE, New Orleans, pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129
  15. Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32 (1): 268–274. https://doi.org/10.1093/molbev/msu300
  16. Okonechnikov, K., Golosova, O., Fursov, M. & the UGENE team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28 (8): 1166–1167. https://doi.org/10.1093/bioinformatics/bts091
  17. Prikhodko, I.S., Shchepin, O.N., Bortnikova, N.A., Novozhilov, Yu.K., Gmoshinskiy, V.I., Moreno, G., López-Villalba, Á., Stephenson, S.L. & Schnittler, M. (2023) A three-gene phylogeny supports taxonomic rearrangements in the family Didymiaceae (Myxomycetes). Mycological Progress 22: art. 11. https://doi.org/10.1007/S11557-022-01858-1
  18. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67 (5): 901–904. https://doi.org/10.1093/sysbio/syy032
  19. Ronikier, A., García-Cunchillos, I., Janik, P. & Lado, C. (2020) Nivicolous Trichiales from the austral Andes: unexpected diversity including two new species. Mycologia 112 (4): 753–780. https://doi.org/10.1080/00275514.2020.1759978
  20. Ronikier, A., Janik, P., de Haan, M., Kuhnt, A. & Zankowicz, M. (2022) Importance of type specimen study for understanding genus boundaries—taxonomic clarifications in Lepidoderma based on integrative taxonomy approach leading to resurrection of the old genus Polyschismium. Mycologia 114: 1008–1031. https://doi.org/10.1080/00275514.2022.2109914
  21. Vences, M., Patmanidis, S., Kharchev, V. & Renner, S.S. (2022) Concatenator, a user-friendly program to concatenate DNA sequences, implementing graphical user interfaces for MAFFT and FastTree. Bioinformatics Advances 2 (1): 1–4. https://doi.org/10.1093/bioadv/vbac050
  22. Wrigley de Basanta, D., Estrada-Torres, A., García-Cunchillos, I., Cano Echevarría, A. & Lado, C. (2017) Didymium azorellae, a new myxomycete from cushion plants of cold arid areas of South America. Mycologia 109 (6): 993–1002. https://doi.org/10.1080/00275514.2018.1426925

How to Cite

Bortnikov, F., Stephenson, S., Prikhodko, I. & Novozhilov, Y.K. (2025) Another acidophilic corticolous species of Trichia (Myxomycetes) from Réunion Island. Phytotaxa 698 (1): 43–50. https://doi.org/10.11646/phytotaxa.698.1.5