Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-04-08
Page range: 266-275
Abstract views: 92
PDF downloaded: 8

Phaeoclavulina aurantilaeta (Gomphaceae, Gomphales), a new species of vivid fruiting body from China

College of Life Sciences, Hunan Normal University, Changsha 410006, P.R. China
Bamian Mountain National Nature Reserve, Guidong County, Chenzhou 423500, P.R. China
College of Life Sciences, Hunan Normal University, Changsha 410006, P.R. China
College of Life Sciences, Hunan Normal University, Changsha 410006, P.R. China
Phaeoclavulina morphological study Phylogenetic analysis taxonomy Fungi

Abstract

A new ramarioid species, described herein as Phaeoclavulina aurantilaeta, was collected from the Bamian Mountain National Nature Reserve, Hunan Province, China, in 2024. Phylogenetic analyses of the nucleotide sequences of two loci (ITS and LSU) well supported the new species within the genus Phaeoclavulina and formed an independent lineage. This species is characterized by orange with pale red basidiomata, elongate and sub-cylindrical basidiospores with truncate (volcanic) spines. A full description, illustrations, and phylogenetic analysis results of the Phaeoclavulina aurantilaeta sp. nov. are provided. In addition, A key to the known Phaeoclavulina species in China is provided.

References

  1. Brinkmann, W. (1897) Vorarbeiten zu einer Pilzflora Westfalen. Jahresbericht des Westfälischen Provinzial-Vereins für Wissenschaft und Kunst 25: 195–207.
  2. Corner, E.J.H. (1970) Supplement to “A monograph of Clavaria and allied genera”. Beihefte zur Nova Hedwigia 33: 87–92.
  3. Chen, Z.H. & Zhang, P. (2019) Atlas of Macrofungi in Hunan. Hunan Normal University Press, Hunan, pp. 288–305.
  4. Deng, P.T., Liu, W.H., Ge, Z.W. & Zhang, P. (2024) Three new ramarioid species of Phaeoclavulina (Gomphaceae, Gomphales) from China. MycoKeys 108: 1–14. https://doi.org/10.3897/mycokeys.108.128716
  5. Franchi, P. & Marchetti, M. (2018) Nomenclatural novelties. Index Fungorum 373: 1.
  6. Franchi, P. & Marchetti, M. (2019) Nuove combinazioni nel Genere Phaeoclavulina. RIvista di Micologia 62: 19–40.
  7. Franchi, P. & Marchetti, M. (2020) Nomenclatural novelties. Index Fungorum 457: 1–7.
  8. Giachini, A.J. (2004) Systematics, phylogeny, and ecology of Gomphus sensu lato. Doctoral Dissertation. Oregon State University, Corvallis, 470 pp.
  9. Giachini, A.J., Hosaka, K., Nouhra, E., Spatafora, J. & Trappe, J.M. (2010) Phylogenetic relationships of the Gomphales based on nuc25S-rDNA, mit-12S-rDNA, and mit-atp6-DNA combined sequences. Fungal Biology 114: 224–234. https://doi.org/10.1016/j.funbio.2010.01.002
  10. Giachini, A.J. & Castellano, M.A. (2011) A new taxonomic classification for species in Gomphus sensu lato. Mycotaxon 115: 183–201. https://doi.org/10.5248/115.183
  11. González-Vila, A., Martínez-González, R., Espinosa, D. & Estrada-Torres, A. (2020) Phaeoclavulina liliputiana sp. nov. (Gomphaceae, Gomphales) a new endemic species from Tlaxcala, Mexico. Phytotaxa 470 (2): 155–164. https://doi.org/10.11646/phytotaxa.470.2.4
  12. Gardes, M. & Bruns, T.D. (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Biology 2: 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  13. Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
  14. Hughes, K., Petersen, R. & Justice, J. (2014) Two new species of Ramaria from Arkansas. MycoKeys 8: 17–29. https://doi.org/10.3897/mycokeys.8.7356
  15. Hu, Y., Karunarathna, S.C., Li, H., Galappaththi, M.C., Zhao, C.L., Kakumyan, P. & Mortimer, P.E. (2022) The impact of drying temperature on basidiospore size. Diversity 14 (4): 239. https://doi.org/10.3390/d14040239
  16. He, Z.M., Chen, Z.H., Bau, T., Wang, G.S. & Yang, Z.L. (2023) Systematic arrangement within the family Clitocybaceae (Tricholomatineae, Agaricales): phylogenetic and phylogenomic evidence, morphological data and muscarine‑producing innovation. Fungal Diversity 123: 1–47. https://doi.org/10.1007/s13225-023-00527-2
  17. Katoh, K. & Standley, D.M. (2016) A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 32 (13): 1933–1942. https://doi.org/10.1093/bioinformatics/btw108
  18. Katoh, K., Rozewicki, J. & Yamada, K. (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20 (4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  19. Kornerup, A. & Wanscher, J.H. (1978) Methuen handbook of colour (3rd edn). Methuen, London, 256 pp.
  20. Kříž, M., Jindřich, O. & Kolařík, M. (2019) Contribution to the knowledge of mycobiota of Central European dry grasslands: Phaeoclavulina clavarioides and Phaeoclavulina roellinii (Gomphales). Czech Mycology 71 (2): 137–150. https://doi.org/10.33585/cmy.71202
  21. Li, J.Z. (2008) Study on Wild Edible Fungi Species Diversity from Hunan. Life Science Research 12 (4): 314–321.
  22. Liu, W.H., Yan, J., Deng, P.T., Qin, W.Q. & Zhang, P. (2022) Two new species of Phaeoclavulina (Gomphaceae, Gomphales) from Hunan Province, China. Phytotaxa 561 (1): 27–40. https://doi.org/10.11646/phytotaxa.561.1.3
  23. Nylander, J.A.A. (2004) MrModeltest v2.0. Program distributed by the author; Evolutionary Biology Centre: Uppsala, Sweden.
  24. Petersen, R.H. (1981) Ramaria subgenus Echinoramaria. Mycologica 79: 1–261.
  25. Petersen, R.H. (1988) The clavarioid fungi of New Zealand. DSIR Science Information Publishing, Wellington, New Zealand, 170 pp.
  26. Rathnayaka, A.R., Tennakoon, D.S., Jones, G.E., Wanasinghe, D.N., Bhat, D.J., Priyashantha, A.H., Stephenson, S.L., Tibpromma, S. & Karunarathna, S.C. (2024) Significance of precise documentation of hosts and geospatial data of fungal collections, with an emphasis on plant-associated fungi. New Zealand Journal of Botany 63 (2–3): 462–489. https://doi.org/10.1080/0028825X.2024.2381734
  27. Rambaut, A. (2012) FigTree v1.4. University of Edinburgh, Edinburgh, UK. Available from: http://tree.bio.ed.ac.uk (accessed 1 January 2023)
  28. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  29. Ridgway, R. (1912) Color standards and color nomenclature. Published by the author, Washington. https://doi.org/10.5962/bhl.title.144788
  30. Stamatakis, A., Ludwig, T. & Meier, H. (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463. https://doi.org/10.1093/bioinformatics/bti191
  31. Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
  32. Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the raxml web servers. Systematic Biology 57: 758. https://doi.org/10.1080/10635150802429642
  33. Teng, S.C. (1963) Fungi of China. Science Press, Beijing.
  34. Vaidya, G., Lohman, D.J. & Meier, R. (2011) Sequencematrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27 (2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  35. Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  36. White, T.J., Bruns, T., Lee, S. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR Protocols: A guide to methods and applications. Academic Press, New York, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  37. Wannathes, N., Kaewketsri, R., Suwannarach, N., Kumla, J. & Lumyong, S. (2018) Phaeoclavulina pseudozippelii sp. nov. (Gomphales, Basidiomycota) from Northern Thailand. Phytotaxa 362 (2): 211–219. https://doi.org/10.11646/phytotaxa.362.2.7
  38. Xu, Y.Y., Jian, S.P., Mao, N., Yang, Z.L. & Fan, L. (2022) Gomphocantharellus, a new genus of Gomphales. Mycologia 114 (4): 748–756. https://doi.org/10.1080/00275514.2022.2065781
  39. Zheng, D.-G., Lu, W.-H., Han, M.-Y., Elgorban, A. M., Yang, J.-Y., Zhou, Y.-Q., Suwannarach, N., Tibpromma, S. & Karunarathna, S.C. (2024) Morphology and phylogeny reveal a new ramarioid species of Phaeoclavulina (Gomphaceae, Basidiomycota) from Yunnan Province, China. Phytotaxa 670 (2): 109–118. https://doi.org/10.11646/phytotaxa.670.2.3

How to Cite

Deng, P.-T., Huang, Z.-H., He, Z.-M. & Zhang, P. (2025) Phaeoclavulina aurantilaeta (Gomphaceae, Gomphales), a new species of vivid fruiting body from China. Phytotaxa 696 (4): 266–275. https://doi.org/10.11646/phytotaxa.696.4.1