Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-03-28
Page range: 55-70
Abstract views: 148
PDF downloaded: 18

New Species of Thalictrum (Ranunculaceae) from Okinawa Island in Japan and Its Phylogenetic Implications

Botanical Gardens, Tohoku University, Kawauchi 12-2, Aoba, Sendai 980-0862, Japan; Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
Okinawa Churashima Foundation Research Institute, Ishikawa, Motobu, Okinawa 905-0206, Japan
Department of Environment Science, University of Human Environments, Okazaki 444–3505, Japan
Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan; The Mt. Fuji Institute for Nature and Biology, Showa Medical University, 4562 Kamiyoshida, Fujiyoshida, Yamanashi 403-0005, Japan
School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan; Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL 60605, USA
Botanical Gardens, Tohoku University, Kawauchi 12-2, Aoba, Sendai 980-0862, Japan
Botanical Gardens, Tohoku University, Kawauchi 12-2, Aoba, Sendai 980-0862, Japan; Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
meadow rue MIG-seq Ryukyu Archipelago Yakushima Island Yambaru National Park Eudicots

Abstract

This study aims to compare Thalictrum (Ranunculaceae) plant species, tentatively identified as T. minus, from the Yambaru region of Okinawa Island, Japan, with closely related species using morphometric and molecular phylogenetic analyses. Morphological observations revealed that the unique plants from Okinawa Island had clavate filaments and thickened roots. These traits differed significantly from those of typical T. minus, which have filamentous filaments and slender roots. Molecular phylogenetic analyses revealed that the unique plant on Okinawa Island is sister to T. urbaini, endemic to Taiwan, and formed a separate clade from those containing T. minus. Based on current morphological comparisons and molecular phylogenetic analyses, the unique plant on Okinawa Island was concluded to be a previously undescribed species, newly named Thalictrum yambaruense. Furthermore, our molecular phylogenetic analyses of Thalictrum in Japan and Taiwan revealed that T. tuberiferum var. yakusimense, endemic to Yakushima Island, Japan, is phylogenetically distinct from T. tuberiferum var. tuberiferum. Therefore, we propose elevating the taxonomic status of T. tuberiferum var. yakusimense to the species level as T. yakusimense.

References

  1. Boivin, B. (1944) Contributions from the Gray Herbarium of Harvard University—No. clii. American Thalictra and their old world allies. Rhodora 46: 337–377. https://doi.org/10.5962/p.336293
  2. Boivin, B. (1957) Études Thalictrologiques III: Réduction du genre Anemonella Spach (Ranunculaceae). Bulletin de la Société Royale de Botanique de Belgique 89: 319–321. Available from: http://www.jstor.org/stable/20792255 (accessed 27 March 2025)
  3. Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  4. Candolle, A. (1817) Regni vegetabilis systema naturale, sive Ordines, genera et species plantarum secundum methodi naturalis normas digestarum et descriptarum. Treuttel et Würtz, Paris, 564 pp. https://doi.org/10.5962/bhl.title.59874
  5. Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  6. Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A. & Cresko, W.A. (2013) Stacks: an analysis tool set for population genomics. Molecular Ecology 22: 3124–3140. https://doi.org/10.1111/mec.12354
  7. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M. & Lee, J.J. (2015) Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 4: s13742-015-0047–0048. https://doi.org/10.1186/s13742-015-0047-8
  8. Darriba, D., Posada, D., Kozlov, A.M., Stamatakis, A., Morel, B. & Flouri, T. (2020) ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution 37: 291–294. https://doi.org/10.1093/molbev/msz189
  9. DDBJ. (1983) DNA data of bank of Japan, National Institute of Genetics, Japan, Mishima. Available from: http://www.ddbj.nig.ac.jp/ (accessed 29 October 2024)
  10. Doyle, J.J. & Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
  11. Emura, K. (1972) Cytotaxonomical studies on the genus Thalictrum. Journal of the Faculty of Science, University of Tokyo. Sect. 3, Botany 11: 93–136.
  12. Hatusima, S. & Ohwi, J. (1943) Two new plants from Mt. Kurokami, Prov. Hizen in Kiushiu. Journal of Japanese Botany 19: 293–294.
  13. Hayata, B. (1911) Icones plantarum formosanarum nec non et contributiones ad floram formosanam: or, Icones of the plants of Formosa, and materials for a flora of the island, based on a study of the collections of the Botanical survey of the Government of Formosa. Bureau of Productive Industry, Government of Formosa, Taihoku, 265 pp. https://doi.org/10.5962/bhl.title.18786
  14. IUCN. (2020) The IUCN Red list of threatened species, version 2024.2. Available from: http://www.iucnredlist.org (accessed 4 December 2024)
  15. Kadota, Y. & Nishikawa, T. (2006) Ranunculaceae. In: Iwatsuki, K., Boufford, D.E. & Ohba, H. (Eds.) Flora of Japan. Kodansha, Tokyo, pp. 258–341.
  16. Kadota, Y. (2016) Thalictrum. In: Ohashi, H., Kadota, Y., Murata, J. & Yonekura, K. (Eds.) Wild flowers of Japan. Heibonsha, Tokyo, pp. 162–167. [In Japanese]
  17. Katoh, K. & Standley, D.M. (2013) MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
  18. Kitamura, S. & Murata, G. (1961) Thalictrum L. (in Japanese). Coloured illustrations of herbaceous plants of Japan II (Choripetalae). Hoikusha, Osaka, pp. 235–239.
  19. Kitamura, S. & Murata, G. (1962) New names and new conceptions adopted in our coloured illustrations of herbaceous plants of Japan II (Choripetalae). (in Japanese). Acta Phytotaxonomica et Geobotanica 20: 195–208. https://doi.org/10.18942/bunruichiri.KJ00002992778
  20. Koidzumi, G. (1917) Thalictrum yakusimense Koidz. In: Matsumura, J. (Ed.) Icones Plantarum Koisikavenses. Maruzen-Kabushiki-Kaisha, Tokyo, pp. 91, t. 191.
  21. Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. (2019) RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35: 4453–4455. https://doi.org/10.1093/bioinformatics/btz305
  22. Kyushu Regional Forest Office. (2000) Report on the Basic Survey of Forest Environment in Northern Okinawa National Forests (Additional Survey). 13 pp. [In Japanese] Available from: https://www.rinya.maff.go.jp/j/kokuyu_rinya/kakusyu_siryo/pdf/00321_7_h11_all.pdf (accessed 9 May 2024)
  23. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. & 1000 Genome Project Data Processing Subgroup. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
  24. Ling, Y.-Y., Peng, H.-W., Lian, L., Erst, A.S., Xiang, K.-L. & Wang, W. (2024) Out of and in East Asia: Phylogeny, biogeography and diversification of Thalictroideae (Ranunculaceae) in the Northern Hemisphere. Annals of Botany mcae 148. https://doi.org/10.1093/aob/mcae148
  25. Linnaeus, C. (1753) Species Plantarum 1. Laurentii Salvii, Holmiae, 560 pp.
  26. Martin, B.T. (2018) raxml_ascbias, GitHub, San Francisco (CA). Available from: https://github.com/btmartin721/raxml_ascbias/ (accessed 29 October 2024)
  27. Maximowicz, C.J. (1859) Primitiae florae Amurensis. Buchdruckerei der kaiserlichen Akademie der Wissenschaften, St. Petersburg, 504 pp.
  28. Maximowicz, C.J. (1877) Diagonoses plantarum novarum Japoniae et Mandshuriae. Bulletin de l'Académie impériale des sciences de St.-Pétersbourg 22: 209–264.
  29. Maximowicz, C.J. (1888) Diagonoses plantarum novarum asiaticarum. VII. Bulletin de l'Académie impériale des sciences de St.-Pétersbourg 32: 477–629.
  30. Michimoto, K., Ito, T. & Maki, M. (2022) The complete chloroplast genome sequence of Thalictrum aquilegiifolium var. sibiricum (Ranunculaceae). Mitochondrial DNA Part B 7: 1171–1173. https://doi.org/10.1080/23802359.2022.2088309
  31. Nakai, T. (1909) Flora Koreana. Journal of the College of Science, Imperial University of Tokyo 26 art. 1: 304 pp.
  32. Nakai, T. (1928) Notulæ ad plantas Japoniæ & Koreæ. XXXV. The Botanical Magazine, Tokyo 42: 451–479. https://doi.org/10.15281/jplantres1887.42.451
  33. Nature Conservation Division, Department of Environmental Affairs, Okinawa Prefectural Government. (2018) Threatened Wildlife in Okinawa. 3rd ed. Japanese: (Fungi and Plants) -Red Data Okinawa-. Nature Conservation Division Department of Environmenta, Okinawa. Available from: https://www.pref.okinawa.jp/_res/projects/default_project/_page_/001/004/629/reddataokinawa.pdf (accessed 29 October 2024)
  34. Ohwi, J. (1933) Symbolae ad Floram Asrae Orientalis, 9. Acta Phytotaxonomica et Geobotanica 2: 149–170.
  35. Ohwi, J. (1936) Synbolae ad floram Asiae orientalis 14. Acta Phytotaxonomica et Geobotanica 5: 179–188.
  36. Park, M.M. & Festerling, Jr. D. (1997) Thalictrum Linnaeus. In: Flora of North America editorial committee (Ed.) Flora of North America: North of Mexico; Magnoliophyta: Magnoliidae and Hamamelidae. Vol. 3. Oxford University Press, New York, Oxford, pp. 258–259.
  37. Rambaut, A. (2017) Figtree-version 1.4.3, a graphical viewer of phylogenetic trees. Computer program distributed by the author. Available from: http://tree.bio.ed.ac.uk/software/figtree (accessed 11 December 2024)
  38. Regel, E. & Tiling, H. (1859) Florula Ajanensis. Nouveaux mémoires de la Société impériale des naturalistes de Moscou 11: 1–140.
  39. Reichenbach, H.G.L. (1828) Conspectus Regni Vegetabilis per gradus naturales evoluti. Apud C. Cnobloch, Lipsiae, 294 pp. https://doi.org/10.5962/bhl.title.127418
  40. Rochette, N.C., Rivera-Colón, A.G. & Catchen, J.M. (2019) Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology 28: 4737–4754. https://doi.org/10.1111/mec.15253
  41. Shaw, J. & Small, R.L. (2005) Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Prunus section Prunocerasus, Rosaceae). American Journal of Botany 92: 2011–2030. https://doi.org/10.3732/ajb.92.12.2011
  42. Shimizu, T. (1963) Studies on the limestone flora of Japan and Taiwan part II. The Faculty of Textile Science and Technology, Shinshu University, Ser. A 12: 1–88. [https://soar-ir.repo.nii.ac.jp/record/13654/files/Textile_A12-01.pdf]
  43. Soza, V.L., Haworth, K.L. & Di Stilio, V.S. (2013) Timing and consequences of recurrent polyploidy in meadow-rues (Thalictrum, Ranunculaceae). Molecular Biology and Evolution 30: 1940–1954. https://doi.org/10.1093/molbev/mst101
  44. Suyama, Y., Hirota, S.K., Matsuo, A., Tsunamoto, Y., Mitsuyuki, C., Shimura, A. & Okano, K. (2022) Complementary combination of multiplex high-throughput DNA sequencing for molecular phylogeny. Ecological Research 37: 171–181. https://doi.org/10.1111/1440-1703.12270
  45. Suyama, Y. & Matsuki, Y. (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Scientific Reports 5: 16963. https://doi.org/10.1038/srep16963
  46. Tamura, M. (1953) Thalictra of Japan, Kuriles, Saghalin, and Corea. Acta Phytotaxonomica et Geobotanica 15: 80–88. [In Japanese]
  47. Vasimuddin, Md., Misra, S., Li, H. & Aluru, S. (2019) Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. In: 2019 IEEE International Parallel and Distributed Processing Symposium. IEEE, pp. 314–324. https://doi.org/10.1109/IPDPS.2019.00041
  48. Wang, W., Lu, A.M., Ren, Y., Endress, M.E. & Chen, Z.D. (2009) Phylogeny and classification of Ranunculales: Evidence from four molecular loci and morphological data. Perspectives in Plant Ecology, Evolution and Systematics 11: 81–110. https://doi.org/10.1016/j.ppees.2009.01.001
  49. Wang, W.T. (2018) Thalictrum (Ranunculaceae) in China. Peking University Press, Peking, 376 pp. [In Chinese]
  50. White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) 38 - Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR Protocols. Academic Press, San Diego, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  51. Yatabe, R. (1892) New or little known plants of Japan. The Botanical Magazine, Tokyo 6: 177–180. https://doi.org/10.15281/jplantres1887.6.177
  52. Yokota, M., Hiraiwa, A., Kanemoto, T. & Komesu, K. (1997) Note of the distribution of plants in the Ryukyus 15. The Biological Magazine Okinawa 35: 55–64. [In Japanese]

How to Cite

Michimoto, K., Yokota, M., Abe, A., Fujii, S., Takahashi, D., Kakishima, S., Yu, C.C., Ito, T. & Maki, M. (2025) New Species of Thalictrum (Ranunculaceae) from Okinawa Island in Japan and Its Phylogenetic Implications. Phytotaxa 696: 55–70. https://doi.org/10.11646/phytotaxa.696.1.3