Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-11-07
Page range: 1-11
Abstract views: 7
PDF downloaded: 1

A new species of Aglaothamnion (Ceramiales, Rhodophyta) from Korea, Aglaothamnion inkyui sp. nov.

Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
Shool of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
rbcL red algae Aglaothamnion, species delimitation taxonomy Algae

Abstract

The genus Aglaothamnion has been separated from Callithamnion based on several characters, most notably the presence of a single nucleus per cell in Aglaothamnion versus multi-nucleate Callithamnion. Few studies have investigated whether these genera are genetically monophyletic. Several species of Aglaothamnion have been reported from Korea, but no phylogenetic studies have been conducted on them. We collected a specimen resembling the genus Aglaothamnion from the east coast of Korea, which is characterized by alternate branching, long axial cells and uninucleate cells. Phylogenetic analyses using rbcL sequences and two DNA-based species delimitation analyses revealed that this specimen is a new species closely related to A. pseudobyssoides. Morphologically, the new species was distinguished by longer axial cells and shorter determinate branches compared to A. pseudobyssoides. The new specimen did not show any reproductive features. Our new species and A. pseudobyssoides are distantly related to other sequences used in the analysis. Our phylogenetic analyses, using our samples and sequences deposited in Genbank, suggests that the named genera, Callithamnion and Aglaothamnion, are not monophyletic, or that the samples were incorrectly named before being submitted to Genbank. While the taxonomy of these two genera requires further analysis, with more markers and type specimens sequenced, it is clear that our new sample is a distinct genetic species. Therefore, we propose the establishment of a new species of Aglaothamnion from Korea, Aglaothamnion inkyui sp. nov.

References

  1. Abbott, I.A. & Hollenberg, G.J. (1976) Marine algae of California. Stanford Univ. Press Stanford, California, 827 pp. https://doi.org/10.1515/9781503621053
  2. Boo, S.M., Lee, I.K., Rueness, J. & Yoshida, T. (1991) Aglaothamnion callophyllidicola (Yamada) comb. nov. (Ceramiaceae, Rhodophyta). The Japanese Journal of Phycology (Sorui) 39: 301–206.
  3. Chah, O.K. & Kim, G.H. (1998) Life history and taxonomy of Aglaothamnion oosumiense Itono (Ceramiaceae, Rhodophyta). Algae 13: 199–206.
  4. Chernomor, O., Haeseler, A.V. & Minh, B.Q. (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65: 997–1008. https://doi.org/10.1093/sysbio/syw037
  5. Crouan, P.L. & Crouan, H.M. (1867) Florule du Finistere. Lefournier, Paris & Brest, 262 pp.
  6. Dixon, P.S. & Price, J.H. (1981) The genus Callithamnion (Rhodophyta: Ceramiaceae) in the British Isles. Bulletin of the Britsh Museum (Natural History). Botany 9: 99–141.
  7. Feldmann-Mazoyer, G. (1941) Recherches sur les Céramiacées de la Méditerranée occidentale. Minerva, Algerier, 510 pp.
  8. Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.2307/2408678
  9. Furnari, G., L'Hardy-Halos, M.T., Rueness, J. & Serio, D. (1998) On the conspecificity of Aglaothamnion tenuissimum and A. byssoides (Ceramiaceae, Rhodophyta). Taxon 47: 843–849. https://doi.org/10.2307/1224190
  10. Guiry, M.D. & Guiry, G.M. (2024) AlgaeBase. World-wide electronic publication, University of Galway. Available from: https://www.algaebase.org (accesssed 4 October 2024)
  11. Halos, M.T. (1965) Sur trois Callithamniées des environs de Roscoff. Cahiers de Biologie Marine 6: 117–134.
  12. Han, J.W., Klochkova, T.A., Shim, J.B., Yoon, K. & Kim, G.H. (2012) Isolation and characterization of a sex-specific lectin in a marine red alga, Aglaothamnion oosumiense Itono. Applied and Environmental Microbiology 78: 7283–7289. https://doi.org/10.1128/AEM.00415-12
  13. Itono, H. (1977) Studies on the Ceramiaceous algae (Rhodophyta) from southern parts of Japan. Bibliotheca Phycologica 35: 1–499.
  14. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285
  15. Kamiya, M. & West, J.A. (2014) Cryptic diversity in the euryhaline red alga Caloglossa ogasawaraensis (Delesseriaceae, Ceramiales). Phycologia 53: 374–382.
  16. Kang, P.J., An, J.W. & Nam, K.W. (2020) New record of Callophyllis mageshimensis (Gigartinales, Kallymeniaceae) in Korea. Korean Journal of Environmental Biology 38: 611–615.
  17. Kim, G.H. & Kim, S.H. (1999) The role of F-actin during fertilization in the red alga Aglaothamnion oosumiense (Rhodophyta). Journal of Phycology 35: 806–814. https://doi.org/10.1046/j.1529-8817.1999.3540806.x
  18. Kim, H.S. & Lee, I.K. (2012) Algal flora of Korea. Volume 4, Number 5. Rhodophyta: Florideophyceae: Ceramiales: Ceramiaceae I (Non-corticate species). Incheon: National Institute of Biological Resources, 152 pp.
  19. Klochkova, T.A., Kang, S.H., Cho, G.Y., Pueschel, C.M., West, J.A. & Kim, G.H. (2006) Biology of a terrestrial green alga, Chlorococcum sp. (Chlorococcales, Chlorophyta), collected from the Miruksazi stupa in Korea. Phycologia 45: 349–358. https://doi.org/10.2216/04-58.1
  20. Kylin, H. (1956) Die Gattungen der Rhodophyceen. C.W.K Gleerups, Lund, 673 pp.
  21. Lee, I.K. & Kang, J.W. (1986) A check list of marine algae in Korea. Algae 1: 311–325.
  22. Lee, Y.P. & Lee, I.K. (1989) Notes on Galaxaura (Rhodophyta) from Jeju Island. Algae 4: 1–9.
  23. Lee, Y.P. (2008) Marine algae of Jeju. Academy Publication, Seoul, 477 pp.
  24. L'Hardy-Halos, M.-T. & Rueness, J. (1990) Comparative morphology and crossability of related species of Aglaothamnion (Rhodophyta). Phycologia 29: 351–366. https://doi.org/10.2216/i0031-8884-29-3-351.1
  25. Lyngbye, H.C. (1819) Tentamen hydrophytologiae danicae: continens omnia hydrophyta cryptogama Daniae, Holsatiae, Faeroae, Islandiae, Groenlandiae hucusque cognita, systematice disposita, descripta et iconibus illustrata, adjectis simul speciebus norvegicis. Hafniae, typis Schultzianis, in commissis Librariae Gyldendaliae, 248 pp. https://doi.org/10.5962/bhl.title.6079
  26. Maggs, C.A. & Hommersand, M.H. (1993) Seaweeds of the British Isles. Volume 1. Rhodophyta. Part 3A. Ceramiales, 444 pp. https://doi.org/10.2216/i0031-8884-34-5-439.1
  27. McIvor, L., Maggs, C.A. & Stanhope, M.J. (2002) RbcL sequences indicate a single evolutionary origin of multinucleate cells in the red algal tribe Callithamnieae. Molecular Phylogenetics and Evolution 23: 433–46. https://doi.org/10.1016/S1055-7903(02)00041-6
  28. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534. https://doi.org/10.1093/molbev/msaa015
  29. Miranda, F. (1932) Remarques sur quelques algues marines des Côtes de la Manche. Revue Algologique 6: 275–295. https://doi.org/10.1007/BF02658084
  30. Muangmai, N., Preuss, M. & Zuccarello, G.C. (2015) Comparative physiological studies on the growth of cryptic species of Bostrychia intricata (Rhodomelaceae, Rhodophyta) in various salinity &temperature conditions. Phycological Research 63: 300–306. https://doi.org/10.1111/pre.12101
  31. Muangmai, N., West, J.A. & Zuccarello, G.C. (2014) Evolution of four Southern Hemisphere Bostrychia (Rhodomelaceae, Rhodophyta) species: phylogeny, species delimitation &divergence times. Phycologia 53: 593–601. https://doi.org/10.2216/14-044.1
  32. Preuss, M., Nelson, W.A. & D’Archino, R. (2022) Cryptic diversity &phylogeographic patterns in the Asparagopsis armata species complex (Bonnemaisoniales, Rhodophyta) from New Zealand. Phycologia 61: 89–96. https://doi.org/10.1111/j.1365-294X.2007.03306.x
  33. Rambaut, A. (2009) FigTree. Tree figure drawing tool. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 6 November 2024)
  34. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  35. Schneider, C.W., Quach, P.K. & Lane, C.E. (2017) A case for true morphological crypsis: Pacific Dasya anastomosans and Atlantic D. cryptica sp. nov. (Dasyaceae, Rhodophyta). Phycologia 56: 359–68. https://doi.org/10.2216/16-79.1
  36. Shim, E., Shim, J., Klochkova, T.A., Han, J.W. & Kim, G.H. (2012) Purification of a sex‐specific lectin involved in gamete binding of aglaothamnion callophyllidicola (rhodophyta). Journal of Phycology 48: 916–924. https://doi.org/10.1111/j.1529-8817.2012.01155.x
  37. Stegenga, H., Bolton, J.J. & Anderson, R.J. (1997) Seaweeds of the South African west coast. Issue 18 of Contributions from the Bolus Herbarium. Bolus Herbarium, University of Cape Town, 655 pp. https://doi.org/10.2216/i0031-8884-37-5-402.1
  38. Stegenga, H. (1986) The Ceramiaceae (excl. Ceramium) (Rhodophyta) of the South West Cape Province, South Africa. Bibliotheca Phycologica 74: 1–149.
  39. Twist, B., Cornwall, C., McCoy, S., Gabrielson, P., Martone, P. & Nelson, W. (2020) The need to employ reliable & reproducible species identifications in coralline algal research. Marine Ecology Progress Series 654: 225–31. https://doi.org/10.3354/meps13506
  40. Verbruggen, H. (2014) Morphological complexity, plasticity, and species diagnosability in the application of old species names in DNA-based taxonomies. Journal of Phycology 50: 26–31. https://doi.org/10.1111/jpy.12155
  41. Wen, X., Zuccarello, G.C., Shim, E., Kim, S.Y. & Kim, G.H. (2023) A new species of the red alga Erythrotrichia (Erythropeltales, Rhodophyta) from Korea: Erythrotrichia johnawestii sp. nov. and observations in culture. Botanica Marina 66: 201–208. https://doi.org/10.1515/bot-2022-0068
  42. Womersley, H.B.S. & Wollaston, E.M. (1998) Tribe Callithamnieae Schmitz 1889: 450. In: Womersley, H.B.S. (Ed.) The marine benthic flora of southern Australia. Part IIIC. State Herbarium of Australia, Richmond, pp. 231–269.
  43. Won, B.Y., Fredericq, S. & Cho, T.O. (2021) New insights into the phylogeny of Spyridia (Ceramiales, Rhodophyta) species with uncinate spines, focusing on the structure of determinate branches. European Journal of Phycology 56: 389–402. https://doi.org/10.1080/09670262.2020.1840634
  44. Yamada, Y. (1932) Notes on some Japanese Algae IV. Journal of the Faculty of Science. The Hokkaido Imperial University 2 (2): 267–276.
  45. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876. https://doi.org/10.1093/bioinformatics/btt499
  46. Zheng, B., Liu, J. & Chen, Z. (2001) Flora algarum marinarum sinicarum Tomus II Rhodophyta No. VI Ceramiales (I). Science Press, Beijing, 159 pp.
  47. Zuccarello, G.C. & D’Archino, R. (2022) Genetic diversity of sympatric Schizymenia dubyi and S. apoda (Schizymeniaceae, Rhodophyta) in Wellington Harbour, New Zealand. Phycologia 61: 549–557. https://doi.org/10.1080/00318884.2022.2090122
  48. Zuccarello, G.C., Muangmai, N., Preuss, M., Sanchez, L.B., Goër, S.L. de & West, J.A. (2015) The Bostrychia tenella species complex: morphospecies and genetic cryptic species with resurrection of B. binderi. Phycologia 54: 261–270. https://doi.org/10.2216/15-005.1
  49. Zuccarello, G.C., West, J.A., Kamiya, M. & King, R.J. (1999) A rapid method to score plastid haplotypes in red seaweeds & its use in determining parental inheritance of plastids in the red alga Bostrychia (Ceramiales). Hydrobiologia 401: 207–214. https://doi.org/10.1023/A:1003706931897