Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-11-05
Page range: 191-202
Abstract views: 169
PDF downloaded: 117

Quercus purhepecha (Fagaceae), a new species of shrub oak endemic to the state of Michoacán, Mexico

Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190 Morelia, Mexico. Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico.
Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190 Morelia, México
Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México. Antigua Carretera a Pátzcuaro No. 8701 Col. Ex Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán, Mexico
Red de Biología Evolutiva, Laboratorio de Bioclimatología, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico
Herbario y Jardín Botánico. Benemérita Universidad Autónoma de Puebla. Av. San Claudio s/n C.P. 72590 Puebla, Puebla, Mexico
Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior, s.n., Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico
endemic species shrubby oaks white oaks Eudicots

Abstract

Within the genus Quercus there are species with a shrubby habit that have been little studied worldwide. In Mexico, several shrub species within section Quercus are taxonomically highly problematic. These include eight named taxa that share traits such as abaxially tomentose leaves and growth of stems from one or multiple rhizomes, and there is evidence of additional undescribed species. Here, Quercus purhepecha is described and illustrated as a new tomentose shrubby white oak species, with a very restricted distribution within the Cuitzeo basin in the Trans-Mexican Volcanic Belt (TMVB), Michoacán state, Mexico. This new species is morphologically compared with Q. frutex, Q. microphylla and Q. repanda, which are similar taxa also distributed in the TMVB. In addition, a potential distribution model of Q. purhepecha for the Cuitzeo basin is presented.

References

  1. Adams, D.C., Collyer, M., Kaliontzopoulou, A. & Sherratt, E. (2016) Geomorph: Software for geometric morphometric analyses. Available from: https://hdl.handle.net/1959.11/21330 (accessed 4 November 2024)
  2. Amatulli, G., Domisch, S., Tuanmu, M., Parmentier, B., Ranipeta, A., Malczyk, J. & Jetz, W. (2018) A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific data 5 (1): 1–15. https://doi.org/10.1038/sdata.2018.40
  3. Baldwin, R. (2009) Use of maximum entropy modeling in wildlife research. Entropy 11 (4): 854–866. https://doi.org/10.3390/e11040854
  4. Bonpland, A.J.A. (1809) Voyage de Humboldt et Bonpland. In: Humboldt, A. von, Bonpland, A., Poteau, A. Schoell, F. & Turpin, P.J.F. Plantes Équinoxiales. 2. F. Schoell, Paris. https://doi.org/10.5962/bhl.title.460
  5. Booth, T. (2022) Checking bioclimatic variables that combine temperature and precipitation data before their use in species distribution models. Austral Ecology 47 (7): 1506–1514. https://doi.org/10.1111/aec.13234
  6. Cigna, F., Tapete, D. (2021) Urban growth and land subsidence: Multi-decadal investigation using human settlement data and satellite InSAR in Morelia, Mexico. Science of the Total Environment 811. https://doi.org/10.1016/j.scitotenv.2021.152211
  7. Cobos, M., Peterson, A., Barve, N., Osorio-Olvera, L. (2019) kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7: e6281. https://doi.org/10.7717/peerj.6281
  8. Cuervo-Robayo, A., Ureta, C., Gómez-Albores, M., Meneses-Mosquera, A., Téllez-Valdés, O., Martínez-Meyer, E. (2020) One hundred years of climate change in Mexico. PLoS ONE 15: e0209808. https://doi.org/10.1101/496216
  9. De Candolle, A. (1864) Cupuliferae. Prodromus Systematis Universalis Regni Vegetabilis 16 (2): 1‒123
  10. De Luna-Bonilla, O.Á., Valencia-Á, S., Ibarra-Manríquez, G., Morales-Saldaña, S., Tovar-Sánchez, E. & González-Rodríguez, A. (2024) Leaf morphometric analysis and potential distribution modelling contribute to taxonomic differentiation in the Quercus microphylla complex. Journal of Plant Research 137: 3–19. https://doi.org/10.1007/s10265-023-01495-z
  11. Denk, T., Grimm, G.W., Manos, P.S., Deng, M. & Hipp, A.L. (2017) An Updated Infrageneric Classification of the Oaks: Review of Previous Taxonomic Schemes and Synthesis of Evolutionary Patterns. In: Gil-Pelegrín, E., Peguero-Pina, J.J. & Sancho-Knapik, D. (eds.) Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Springer International Publishing, Cham, pp. 13–38. https://doi.org/10.1007/978-3-319-69099-5_2
  12. Escobar, L., Lira-Noriega, A., Medina-Vogel, G. & Peterson, A. (2014) Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospatial Health 9: 221–229. https://doi.org/10.4081/gh.2014.19
  13. Hipp, A.L., Manos, P.S., González-Rodríguez, A., Hahn, M., Kaproth, M., McVay, J.D., Avalos, S.V. & Cavender-Bares, J. (2018) Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist 217: 439–452. https://doi.org/https://doi.org/10.1111/nph.14773
  14. Hipp, A.L., Manos, P.S., Hahn, M., Avishai, M., Bodénès, C., Cavender-Bares, J., Crowl, A.A., Deng, M., Denk, T., Fitz-Gibbon, S., Gailing, O., González-Elizondo, M.S., González-Rodríguez, A., Grimm, G.W., Jiang, X.-L., Kremer, A., Lesur, I., McVay, J.D., Plomion, C., Rodríguez-Correa, H., Schulze, E.-D., Simeone, M.C., Sork, V.L. & Valencia-Avalos, S. (2020) Genomic landscape of the global oak phylogeny. New Phytologist 226: 1198–1212. https://doi.org/https://doi.org/10.1111/nph.16162
  15. iNaturalistMX. (2024) Available from: https://mexico.inaturalist.org/ (accessed 1 January 2024)
  16. INEGI. (2014) Red hidrográfica, subcuencas hidrográficas de México, escala: 1:50000. edición: 2. Instituto Nacional de Estadística y Geografía. Aguascalientes, Ags., México.
  17. Kinsey, A.C. (1936) The origin of higher categories in Cynips. In: Indiana University publications. Science Series 4. Entomological Series 10. pp. 1–334.
  18. Liebmann, F.M. (1854) Foredrag over Egeslaegten I America. In: Oversigt over det Kongelige danske Videnskabernes Selskabs Forhandlinger og dets Medlemmers Arbeider, Kjobenhavn, Copenhagen. pp. 159‒189.
  19. Linnaeus, C. (1753) Species Plantarum, Impensis Laurentii Salvii, Holmiae, 1231 pp. https://doi.org/10.5962/bhl.title.669
  20. Neé, L. (1801) Descripcion de varias especies nuevas de encina (Quercus de Linneo). Anales de Ciencias Naturales 3: 260‒278.
  21. Phillips, S., Anderson, R. & Schapire, R. (2006) Maximum entropy modeling of species geographic distributions. Ecological modelling, 190 (3–4): 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  22. Phillips, S. & Dudík, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31 (2): 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  23. R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL Available from: https://www.R-project.org/ (accessed 4 November 2024)
  24. Robinson, N., Regetz, J. & Guralnick, R. (2014) EarthEnv-DEM90: a nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS Journal of Photogrammetry and Remote Sensing 87: 57–67. https://doi.org/10.1016/j.isprsjprs.2013.11.002
  25. Rojas‐Soto, O., Forero‐Rodríguez, J.S., Galindo‐Cruz, A., Mota‐Vargas, C., Parra‐Henao, K.D., Peña‐Peniche, A., Piña-Torres, J., Rojas-Herrera, K., Sánchez-Rodríguez, J.D., Toro-Cardona, F.A. & Trinidad‐Domínguez, C.D. (2024) Calibration areas in ecological niche and species distribution modelling: Unravelling approaches and concepts. Journal of Biogeography 51 (8): 1416–1428. https://doi.org/10.1111/jbi.14834
  26. Sabás-Rosales, J.L., Siqueiros-Delgado, M.E., Valencia-Ávalos, S. & Enríquez-Enríquez, E.D. (2017) Reconocimiento taxonómico de seis especies arbustivas de encinos (Quercus secc. Quercus: Fagaceae). Polibotánica 42 (22): 11–38. https://doi.org/10.18387/polibotanica.44.2
  27. Schlager, S. (2017) Morpho and Rvcg–Shape Analysis in R: R-Packages for geometric morphometrics, shape analysis and surface manipulations. In: Zheng, G., Li, S. & Székely, G. (Eds.) Statistical shape and deformation analysis. Elsevier, pp. 217–256. https://doi.org/10.1016/B978-0-12-810493-4.00011-0
  28. Trelease, W. (1924) The American Oaks. Memoirs of the National Academy of Sciences 20: 1–255.
  29. Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W-H., Li, D-Z., Marhold, K., May, T.W., McNeill, J.M., Monro, A.M., Prado, J., Price, M.J. & Smith, G.F. (Eds.) (2018) International Code of Nomenclature for algae, fungi and plants (Shenzhen Code). Adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books. Available from: http://www.iapt-taxon.org/nomen/main.php?page=glo (accessed 1 August 2019)
  30. Valencia-A., S.; Flores-Franco, G., Jiménez-Ramírez, J. & Mora-Jarvio, M. (2017) Distribution and diversity of Fagaceae in Hidalgo, Mexico. Botanical Sciences 95 (4): 660–721. https://doi.org/10.17129/botsci.1020
  31. Valencia-A., S. (2021) Species delimitation in the genus Quercus (Fagaceae). Botanical Sciences 99: 1–12. https://doi.org/10.17129/botsci.2658