Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-07-30
Page range: 157-168
Abstract views: 38
PDF downloaded: 7

Staurochlamys (Neurolaeneae, Asteraceae): an endemic genus from Cerrado, Brazil

Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Campus do Vale, Bairro Agronomia, Porto Alegre, RS 91501-970, Brazil, Fundação Zoobotânica da Prefeitura de Belo Horizonte, Herbário BHZB, Belo Horizonte, MG 31365-450 Brazil
Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Campus do Vale, Bairro Agronomia, Porto Alegre, RS 91501-970, Brazil
Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Campus do Vale, Bairro Agronomia, Porto Alegre, RS 91501-970, Brazil
Compositae Heliantheae Alliance Savanna Species distribution model Threatened species Eudicots

Abstract

Staurochlamys is a monospecific genus found exclusively in the Brazilian Cerrado, recognized by a unique morphological trait in the Asteraceae: the flattened involucre. Prior research into this genus has been limited, and this paper represents the first comprehensive investigation exclusively dedicated to it. This study presents a thorough morphological description of the species, a nomenclatural revision, insights into the species distribution, phenology, a preliminary evaluation of extinction risk, details related to risk assessment, and the species distribution modelling. Additionally, previously unlisted collections have been incorporated, with careful consideration of habitat details. The genus is reaffirmed as an exclusive component to the Brazilian Cerrado, bearing an ‘Endangered’ classification, and historical modeling has proposed a hypothesis to explain the outliers in its current distribution.

References

  1. Araújo, M.B., Anderson, R.P., Barbosa, A.M., Beale, C.M., Dorman, C.F., Early, R., Garcia, R.A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R.B., Zimmermann, N.E. & Rahbek, C. (2019) Standards for distribution models in biodiversity assessments. Science Advances 5: eaat4858. https://doi.org/10.1126/sciadv.aat4858
  2. Antonelli, A. (2022) The rise and fall of Neotropical biodiversity. Botanical Journal of the Linnean Society 199 (1): 8–24. https://doi.org/10.1093/botlinnean/boab061
  3. Bachman, S., Moat, J. Hill, A.W., Torre, J. & Scott, B. (2011) Supporting Red List threat assessments with GeoCAT: Geospatial conservation assessment tool. ZooKeys 150: 117–126. https://doi.org/10.3897/zookeys.150.2109
  4. Baker, J.G. (1889) Staurochlamys. Hooker’s Icones Plantarum 19: pl. 1825.
  5. Beentje, H. (2016) The Kew Plant Glossary an Illustrated Dictionary of Plant Terms. Kew Publishing, Richmond, 184 pp.
  6. Behling, H. (2002) Late Quaternary vegetation and climate dynamics in southeastern Amazonia inferred from Lagoa da Confusão in Tocantins State, northern Brazil. Amazoniana 17 (1): 27–39.
  7. Behling, H., Pillar, V.D. & Bauermann, S.G. (2005) Late Quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Review of Palaeobotany and Palynology 133 (3–4): 235–248. https://doi.org/10.1016/j.revpalbo.2004.10.004
  8. Bellamy, C., Boughey, K., Hawkins, C., Reveley, S., Spake, R., Williams, C. & Altringham, J. (2020) A sequential multi-level framework to improve habitat suitability modeling. Landscape Ecology 35: 1001–1020. https://doi.org/10.1007/s10980-020-00987-w
  9. Berchtold, F.W. & Presl, J.S. (1820) O Prirozenosti Rostlin. Krala Wiljma Endersa, Prague, 322 pp.
  10. Bertelli C.M., Stokes, H.J., Bull, J.C. & Unsworth, R.K.F. (2022) The use of habitat suitability modelling for seagrass: A review. Frontiers in Marine Science 9: 1–8. https://doi.org/10.3389/fmars.2022.997831
  11. Bringel, J.B.A. & Cavalcanti, T.B. (2009) Heliantheae (Asteraceae) na bacia do rio Paranã, (Goiás, Tocantins), Brasil. Rodriguésia 60 (3): 551–580. https://doi.org/10.1590/2175-7860200960306
  12. Brown, R. (1817) Observations on the natural family of plants called Compositae. Transactions of the Linnean Society 12: 1–120. https://doi.org/10.5962/bhl.title.140190
  13. Bueno, M.L., Pennington, R.T., Dexter, K.G., Kamino, L.H.Y., Pontara, V., Neves, D.M., Ratter, J.A. & Oliveira-Filho, A.T. (2017) Effects of Quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography 40 (3): 403–414. https://doi.org/10.1111/ecog.01860
  14. Bueno, V.R. (2023) Neurolaeneae Systematics. Universidade Federal do Rio Grande do Sul, Porto Alegre, 377 pp.
  15. Buzatti, R.S.D.O., Lemos-Filho, J.P., Bueno, M.L. & Lovato, M.B. (2017) Multiple Pleistocene refugia in the Brazilian cerrado: evidence from phylogeography and climatic nichemodelling of two Qualea species (Vochysiaceae). Botanical Journal of the Linnean Society 185 (3): 307–320. https://doi.org/10.1093/botlinnean/box062
  16. Cassini, A.H.G. (1819) Suite du Sixiéme Mémoire sur la famille des Synanthérées, contenant les Caractéres des tribus. Journal de Physique de Chimie et D´Histoire Naturelle 88: 189–215.
  17. Cassini, A.H.G. (1824) Mératie, Meratia. In: Cuvier, F. (Ed.) Dictionnaire des Sciences Naturelles, vol. 30. F. G. Levrault, Strasbourg and Paris, pp. 65–69.
  18. Christenhusz, M.J.M. & Byng, J.W. (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261 (3): 201–217. https://doi.org/10.11646/phytotaxa.261.3.1
  19. Crawford, D.J., Tadesse, M., Mort, M.E., Kimball, R.T. & Randle, C.P. (2009) Coreopsideae. In: Funk, V.A., Susanna, A., Stuessy, T.F. & Bayer, R.J. (2009) Systematics, Evolution and Biogeography of Compositae. IAPT, Vienna, pp. 713–730.
  20. Ellis, B., Daly, D.C., Hickey, L.J., Johnson, K.R., Mitchell, J.D., Wilf, P. & Wing, S.L. (2009) Manual of Leaf Architecture. The New York Botanical Garden Press, New York, 190 pp. https://doi.org/10.1079/9781845935849.0000
  21. Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302–4315. https://doi.org/10.1002/joc.5086
  22. Flora e Funga do Brasil (2024) Jardim Botânico do Rio de Janeiro. Available from: http://floradobrasil.jbrj.gov.br/ (accessed 14 July 2024)
  23. Fordham, D.A., Saltré, F., Haythorne, S., Wigley, T.M.L., Otto-Bliesner, B.L., Chan, K.C. & Brook, B.W. (2017) PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40 (11): 1348–1358. https://doi.org/10.1111/ecog.03031
  24. Funk, V.A., Susanna, A., Stuessy, T.F. & Bayer, R.J. (2009) Systematics, Evolution and Biogeography of Compositae. International Association for Plant Taxonomy, Vienna, 965 pp.
  25. Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9
  26. Haywood, A.M., Valdes, P.J., Aze, T., Barlow, N., Burke, A., Dolan, A.M., von der Heydt, A.S., Hills, D.J., Jamieson, S.S.R., Otto-Bliesner, B.L., Salzmann, U., Saupe, E. & Voss, J. (2019) What can Palaeoclimate Modelling do for you? Earth Systems and Environment 3: 1–18. https://doi.org/10.1007/s41748-019-00093-1
  27. Hickey, L.J. (1973) Classification of the architecture of dicotyledonous leaves. American Journal of Botany 60: 17–33. https://doi.org/10.1002/j.1537-2197.1973.tb10192.x
  28. Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. (2017) Dismo: species distribution modeling. R package version 1.1-4. Available from: https://CRAN.R-project.org/package=dismo (accessed 31 May 2024)
  29. IUCN (2024) Guidelines for using the IUCN red list categories and criteria, version 16. Prepared by the Standards and Petitions Committee of the IUCN Species Survival Commission, Cambridge U.K. Available from: http://www.iucnredlist.org/resources/redlistguidelines (accessed 8 July 2024)
  30. Karis, P.O. & Ryding, O. (1994) Tribe Heliantheae. In: Bremer, K. (Ed.) Asteraceae, cladistics and classification. Timber Press, Oregon, pp. 559–624.
  31. Ledru, M., Cordeiro, R., Dominguez, J., Martin, L., Mourguiart, P., Sifeddine, A. & Turcq, B. (2001) Late-Glacial Cooling in Amazonia Inferred from Pollen at Lagoa do Caçó, Northern Brazil. Quaternary Research 55 (1): 47–56. https://doi.org/10.1006/qres.2000.2187
  32. Lessing, C.F. (1830) De Synanthereis Herbarii Regii Berolinensis. Linnaea 5 (1): 1–177.
  33. Lindley, J. (1829) An Encyclopedia of Plants. Longman, Rees, Orme, Brown, and Green, London, 1159 pp.
  34. Linnaeus, C. von (1753) Species Plantarum, ed. 1. L. Salvius, Stockholm, 1200 pp.
  35. Linnaeus, C. von (1763) Species plantarum, ed. 2, vol. 2. L. Salvius, Stockholm, 1684 pp.
  36. Loureiro, J. (1790) Flora Cochinchinensis: Sistens plantas in regno Cochinchina nascentes. Academia das Ciências de Lisboa, Lisboa, 722 pp.
  37. Magenta, M.A.G., Alves, M. & Bringel, J.B.A. (2017) Coreopsideae. In: Roque, N., Teles, A.M. & Nakajima, J.N. (Eds.) A família Asteraceae no Brasil. Salvador, UFBA, pp. 165–170. https://doi.org/10.7476/9788523219994.0024
  38. Matos, M.Q. & Felfili, J.M. (2010) Florística, fitossociologia e diversidade da vegetação arbórea nas matas de galeria do Parque Nacional de Sete Cidades (PNSC), Piauí, Brasil. Acta Botanica Brasilica 24 (2): 483–496. https://doi.org/10.1590/s0102-33062010000200019
  39. Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M. & Gascon, C. (2011) Global biodiversity conservation: the critical role of hotspots. In: Zachos, F. & Habel, J. (Eds.) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Berlin & Heidelberg, pp. 3–22. https://doi.org/10.1007/978-3-642-20992-5_1
  40. Myers, N., Mittermeier, R., Mittermeier, C.G., Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403 (6772): 853–858. https://doi.org/10.1038/35002501
  41. Otto-Bliesner, B., Marshal, S.J., Overpeck, J.T., Miller, G.H., Hu, A.-X. & Cape Last Interglacial Project Members (2006) Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation. Science 311 (5768): 1751–1753. https://doi.org/10.1126/science.1120808
  42. Panero, J.L. (2007) Tribe Heliantheae Cass. In: Kadereit, J.W. & Jeffrey, C. (Eds.) The Families and Genera of Vascular Plants, vol. 8. Springer, Berlin, pp. 440‒447.
  43. Peterson, A.T. & Soberón, J. (2012) Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Righ. Natureza & Conservação 10 (2): 1–6. https://doi.org/10.4322/natcon.2012.019
  44. Phillips, S.J. & Dudík, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  45. QGIS Development Team (2015) QGIS Geographic Information System, Open Source Geospatial Foundation Project. Available from: http://qgis.osgeo.org (accessed 8 July 2022)
  46. R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/ (accessed 8 July 2024)
  47. Reginato, M. (2016) MonographaR: an R package to facilitate the production of plant taxonomic monographs. Brittonia 68 (2): 212–216. https://doi.org/10.1007/s12228-015-9407-z
  48. Robinson, H. (1981) A Revision of the Tribal and Subtribal Limits of the Heliantheae (Asteraceae). Smithsonian Institution Press, Washington, 102 pp. https://doi.org/10.5962/bhl.title.131655
  49. Roque, N. & Bautista, H. (2008) Asteraceae: Caracterização e Morfologia Floral. EDUFBA, Salvador, 71 pp.
  50. Roque, N. & Barbosa, M.L. (2024) Staurochlamys in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available from: https://floradobrasil.jbrj.gov.br/FB27382 (accessed 8 July 2024)
  51. Roy, S., Suman, A., Ray, S. & Saikia, S.K. (2022) Use of species distribution models to study habitat suitability for sustainable management and conservation in the Indian subcontinent: A decade’s retrospective. Frontiers in Sustainable Resource Management 1: 1–18. https://doi.org/10.3389/fsrma.2022.1031646
  52. Rydberg, A. (1927) (Carduales) Carduaceae, Liabeae, Neurolaeneae, Senecioneae (pars). In: North American Flora, vol. 34. New York Botanical Garden, New York, 360 pp.
  53. Sharp, W.M. (1935) A critical study of certain epappose genera of the Heliantheae-Verbesininae of the natural family Compositae. Annals of the Missouri Botanical Garden 22: 51–152. https://doi.org/10.2307/2394139
  54. Specieslink (2024) SpeciesLink network. Available from: https://specieslink.net/search/ (accessed 8 July 2023)
  55. Sprengel, C.P.J. (1823) Description de deux genres nouveaux. Bulletin des Sciences 1823 (1): 54–55.
  56. Stuessy, T.F. (1978) Heliantheae–systematic review. In: Heywood, V.H., Harborne, J.B. & Turner, B.L. (Eds.) The Biology and Chemistry of the Compositae. Academic Press, London, pp. 621–671.
  57. Thiers, B. (2024-continuously updated) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available from: http://sweetgum.nybg.org/science/ih/ (accessed 8 July 2024)
  58. Werneck, F.P, Nogueira, C., Colli, G.R., Sites Jr, J.W. & Costa, G.C. (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. Journal of Biogeography 39: 1695–1706. https://doi.org/10.1111/j.1365-2699.2012.02715.x