Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-06-13
Page range: 79-90
Abstract views: 81
PDF downloaded: 2

Valeriana alanyense (Caprifoliaceae): a new species from Southwest Anatolia (Turkey) based on morphological and molecular data

South-West Anatolia Forest Research Institute, Antalya, Turkey
Department of Plant and Animal Production, Technical Sciences Vocational School, Karamanoğlu Mehmetbey University, Karaman, Turkey
Department of Biology, Faculty of Science, Akdeniz University, Antalya, Turkey
Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey
Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey
Anatolia molecular data morphology new species taxonomy Valeriana Eudicots

Abstract

Valeriana alanyense a new species to science from Southwestern of Turkey, is described and illustrated. The new species exhibits affinities to V. speluncaria and it differs from it in certain morphological characteristics: leaf shape and size, elongated stems and smaller corolla length. Geographical distribution at lower altitudes also sets it significantly from V. speluncaria. A comprehensive description, photos, information regarding its habitat and ecology, comparisons to related species, a distribution map, and conservation status are additionally considered. Moreover, morphological characterizations of V. alanyense and V. speluncaria were supported by using the ISSR PCR technique in molecular analyses. For molecular analyses, six ISSR primers that gave the most polymorphic band profiles for the Valeriana genus were selected among a total of twenty-five primers. As a result of PCR performed with the six selected ISSR primers, a total of 65 band profiles ranging from 250bp to 1200bp were seored. According to the obtained band profile scores and the constructed dendogram analysis, V. alanyense and V. speluncaria can be separated from each other at the species level. This result supports the data obtained from morphological analysis.

References

  1. Abbasi, S., Afsharzadeh, S. & Dinarvand, M. (2021) Genetic structure of Zannichellia L. populations according to mountain barriers in Iranas revealed by ISSR and SRAP markers. Turkish Journal of Botany 45 (4): 328–339. https://doi.org/10.3906/bot-2102-36
  2. Acosta, J.M., Salomón, L.U., Zanotti, C.A. & Pozner, R.E. (2015) A new species of Valeriana from the Andean Region of Northwestern Argentina. Based on Morphological and Molecular Data, Systematic Botany 40 (3): 922–928. https://doi.org/10.1600/036364415X689348
  3. Aitken, S.N., Yeaman, S., Holliday, J.A., Wang, T. & Curtis-McLane, S. (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1: 95–111. https://doi.org/10.1111/j.1752-4571.2007.00013.x
  4. APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105–121. https://doi.org/10.1111/j.1095-8339.2009.00996.x
  5. APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20. https://doi.org/10.1111/boj.12385
  6. Baier, F., Gauye, F., Perez-Carrasco, R., Payne, J.L. & Schaerli, Y. (2023) Environment-dependent epistasis increases phenotypic diversity in gene regulatory networks. Science Advances 9 (21): eadf1773. https://doi.org/10.1126/sciadv.adf1773
  7. Barrie, F.R. (2003) Seven new species and one new variety of Valeriana (Valerianaceae) from Mexico. Acta Botanica Mexicana 62 (62): 31–64. https://doi.org/10.21829/abm62.2003.914
  8. Batsch, A.J.G.C. (1802) Tabula affinatum regni vegetabilis. Vinariae, Landes-Industrie-Comptoir, 340 pp. https://doi.org/10.5962/bhl.title.7569
  9. Barton, N.H. (2010) Mutation and the evolution of recombination. Philosophical Transactions of the Royal Society B—Journals 365 (1544): 1281–1294. https://doi.org/10.1098/rstb.2009.0320
  10. Baum, D.A., Peng, Z., Dolson, E., Smith, E., Plum, A.M. & Gagrani, P. (2023) The ecology-evolution continuum and the origin of life. Journal of the Royal Society Interface 20 (208): 20230346. https://doi.org/10.1098/rsif.2023.0346
  11. Bell, C.D. & Donoghue, M.J. (2005) Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Organisms, Diversity & Evolution 5: 147–159. https://doi.org/10.1016/j.ode.2004.10.014
  12. Bell, G. & Collins, S. (2007) Adaptation, extinction and global change. Evolutionary Applications 1 (1): 3–16. https://doi.org/10.1111/j.1752-4571.2007.00011.x
  13. Ben Mahmoud, K., Mezzapesa, G.N., Abdelkefi, F. & Perrino, E.V. (2024) Nutritional value and functional properties of an underexploited Tunisian wild beet (Beta macrocarpa Guss.) in relation to soil characteristics. Euro-Mediterranean Journal for Environmental Integration 9: 705–720. https://doi.org/10.1007/s41207-024-00468-5
  14. Berlocher, S.H. & Feder, J.L. (2002) Sympatric speciation in phytophagous insects: moving beyond controversy? Annual Review of Entomology 47: 773–815. https://doi.org/10.1146/annurev.ento.47.091201.145312
  15. Boissier, E. (1844) Diagnoses plantarum orientalium novarum, Ser 1:4. Lipsiae, Apud B. Hermann. pp. 70.
  16. Boissier, P.E. & Heldreich, T.H.H. von (1849) Diagnoses plantarum orientalium novarum, 10. Lipsiae [Leipzig], 37 pp.
  17. Boissier, E. (1875) Flora orientalis, vol. 3. H. Georg, Geneva, 1033 pp. Available from: https://bibdigital.rjb.csic.es/records/item/10748-flora-orientalis-volumen-tertium (accessed 12 June 2024)
  18. Brullo, S., Tomaselli, V. & Wagensommer, R.P. (2015) A new species of Odontites (Orobanchaceae) from southern Italy. Phytotaxa 213 (3): 271–281. https://doi.org/10.11646/phytotaxa.213.3.7
  19. Butlin, R.K., Galindo, J. & Grahame, J.W. (2008) Review. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philosophical Transactions of the Royal Society B—Journals 363 (1506): 2997–3007. https://doi.org/10.1098/rstb.2008.0076
  20. Chinchilla, I.F. (2020) A new tree species of Cupania (Sapindoideae, Sapindaceae) from Quepos, Costa Rica. Phytotaxa 475 (3): 178–186. https://doi.org/10.11646/phytotaxa.475.3.2
  21. Cohen, I.R. & Marron, A. (2020) The evolution of universal adaptations of life is driven by universal properties of matter: energy, entropy, and interaction. F1000 Research 9: 626–656. https://doi.org/10.12688/f1000research.24447.3
  22. Çeçen, Ö., Uğurlu-Aydın, Z. & Dönmez, A.A. (2023) Morphological and molecular data on a new species of Polygala (Polygalaceae) from Turkey. Nordic Journal of Botany, 2023: e03951. https://doi.org/10.1111/njb.03951
  23. Dean, A.M. & Thornton, J.W. (2007) Mechanistic approaches to the study of evolution: the functional synthesis. Nature Reviews Genetics 8 (9): 675–688. https://doi.org/10.1038/nrg2160
  24. De Candolle, A.P. (1813) Catalogus Plantarum Horti Botanici Monspeliensis, vol. 1. Monspelii, Ex typis J Martel natus majoris, Parisiis et Argentorati, Apud Am Koenig, Bibliopolam, 155 pp.
  25. Doyle, J.J. & Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
  26. Drury, A.L., Gout, J.F. & Dapper, A.L. (2023) Modeling recombination rate as a quantitative trait reveals new insight into selection in humans. Genome Biology and Evolution 15 (8): evad132. https://doi.org/10.1093/gbe/evad132
  27. Durbin, M.L., Lundy, K.E., Morrell, P.L., Torres-Martinez, C.L. & Clegg, M.T. (2003) Genes that determine flower color: the role of regulatory changes in the evolution of phenotypic adaptations. Molecular Phylogenetics and Evolution 29 (3): 507–18. https://doi.org/10.1016/s1055-7903(03)00196-9
  28. Düşen, O., Göktürk, R.S., Kaya, E., Sarpkaya, U. & Gürcan, B. (2018) Morphological and molecular determination of a new Viola species (Violaceae) from Turkey. Phytotaxa 369 (1): 37–46. https://doi.org/10.11646/phytotaxa.369.1.4
  29. Felix, F.C., Chagas, K.P.T., Ferrari, C.S. & Vieira, F.A. (2020) Pacheco, M.V. Applications of ISSR markers in studies of genetic diversity of Pityrocarpa moniliformis. Revista Caatinga 33 (4): 1017–1024. https://doi.org/10.1590/1983-21252020v33n417rc
  30. Francisco-Gutiérrez, A., Cházaro-Basáñez, M. & Carral-Domínguez, R. (2023) The first epiphytic species of Valeriana in the world: Valeriana rudychazaroi (Caprifoliaceae). PhytoKeys 236: 145–156. https://doi.org/10.3897/phytokeys.236.110905
  31. Fréjaville, T., Vizcaíno-Palomar, N., Fady, B., Kremer, A. & Benito Garzón, M. (2020) Range margin populations show high climate adaptation lags in European trees. Global Change Biology 26 (2): 484–495. https://doi.org/10.1111/gcb.14881
  32. Galatali, S., Abdul Ghafoor, N. & Kaya, E. (2021) Characterization of Olive (Olea europaea L.) Genetic Resources via PCR-Based Molecular Marker Systems. European Journal of Biology and Biotechnology 2 (1): 26–33. https://doi.org/10.24018/ejbio.2021.2.1.146
  33. Göktürk, R.S., Yüceol, F., Galatalı, S., Kaya, E., Hamzaoğlu, E. & Koç, M. (2023) A new Cephalaria (Caprifoliaceae) species from Turkey. Phytotaxa 587 (2): 173–183. https://doi.org/10.11646/phytotaxa.587.2.6
  34. Gwinner, R., Setotaw, T.A., Rodrigues, F.A., França, D.V., da Silveira, F.A., Pio, L.A. & Pasqual, M. (2016) Population structure of Annona crassiflora: an endemic plant species of the Brazilian Cerrado. Genetics and Molecular Biology 15 (4): gmr15049137. https://doi.org/10.4238/gmr15049137
  35. Harlan, J.R. & de Wet, J.M.J. (1971) Toward a rational classification of cultivated plants. Taxon 20: 509–517.
  36. Hidalgo, O., Garnatje, T., Susanna, A. & Mathez, J. (2004) Phylogeny of Valerianaceae based on matK and ITS markers, with reference to matK individual polymorphism. Annals of Botany 93 (3): 283–293. https://doi.org/10.1093/aob/mch042
  37. Hunt, T. (2012) The middle way of evolution. Communicative & Integrative Biology 5 (5): 408–21. https://doi.org/10.4161/cib.20581
  38. IUCN (2024) Guidelines for Using the IUCN Red List Categories and Criteria. Version 16. Prepared by the Standards and Petitions Committee. Available from: https://www.iucnredlist.org/resources/redlistguidelines (accessed 5 April 2024)
  39. Jacquin, N.J. (1775) Florae Austriacae. vol. 3. L.J. Kaliwoda, Viennae, 59 pp. 100 pl.
  40. Jussieu, A.L. de (1789) Genera plantarum. Herissant & Barrois, Paris, 498 pp. +1 errata
  41. Kardos, M., Armstrong, E.E., Fitzpatrick, S.W., Hauser, S., Hedrick, P.W., Miller, J.M., Tallmon, D.A. & Funk, W.C. (2021) The crucial role of genome-wide genetic variation in conservation. Proceedings of the National Academy of Sciences of the United States of America 118 (48): e2104642118. https://doi.org/10.1073/pnas.2104642118
  42. Kaya, E. & Yılmaz-Gokdogan, E. (2016) Using two retrotransposon based marker systems (IRAP and REMAP) for molecular characterization of olive (Olea europaea L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44 (1): 167–174. https://doi.org/10.15835/nbha44110158
  43. Kaya, E., Vatansever, R. & Filiz, E. (2018) Assessment of the genetic relationship of Turkish olives (Olea europaea subsp. europaea) cultivars based on cpDNA trnL-F regions. Acta Botanica Croatica 77 (1): 88–92. [https://www.abc.botanic.hr/index.php/abc/article/view/1618]
  44. Kekäläinen, J. (2021) Genetic incompatibility of the reproductive partners: an evolutionary perspective on infertility. Human Reproduction 36 (12): 3028–3035. https://doi.org/10.1093/humrep/deab221
  45. Kutschker, A. & Morrone, J.J. (2012) Distributional patterns of the species of Valeriana (Valerianaceae) in southern South America. Plant Syst Evol 298: 535–547. https://doi.org/10.1007/s00606-011-0564-6
  46. Lamarck, J.B. (1791) Tableau encyclopédique et méthodique des trois reÌgnes de la nature, Botanique, vol. 1. Panckoucke, Paris, 496 pp. https://doi.org/10.5962/bhl.title.218
  47. Larsen, B.B. (1986) A taxonomic revision of Phyllactis and Valeriana sect. Bracteata (Valerianaceae). Nordic Journal of Botany 6: 427–446. https://doi.org/10.1111/j.1756-1051.1986.tb00899.x
  48. Latt, M.M., Tanaka, N. & Park, B.B. (2023) Two new species of Impatiens (Balsaminaceae) from Myanmar. Phytotaxa 583 (2): 141–152. https://doi.org/10.11646/phytotaxa.583.2.2
  49. Linnaeus, C. (1753) Species plantarum, Exhibentes Plantas Rite Cognitas, ad Genera Relates, Cum Differentiis Specificis, Nominibus Trivialibus, Synonymis Selectis, Locis Natalibus, Secundum Systema Sexuale Digestas, vol. 1. Impensis Laurentii Salvii, Holmiae [Stockholm], [xii] + 560 pp. https://doi.org/10.5962/bhl.title.669
  50. Maire, R. & Petitmengin, M. (1908) Étude des plantes vasculaires récoltées en Grèce (1906). In: Maire, R. Materiaux pour servir à l’étude de la flore et de la géographie botanique de l’orient. Fasc. 4. Berger-Levrault et Cie., Nancy. 239 pp.
  51. Mallet, J. (2008) Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philosophical Transactions of the Royal Society B 363 (1506): 2971–2986. https://doi.org/10.1098/rstb.2008.0081
  52. Martin, J.S., Smith, N.A. & Francis, C.D. (2013) Removing the entropy from the definition of entropy: clarifying the relationship between evolution, entropy, and the second law of thermodynamics. Evolution: Education and Outreach 6 (1): 30–39. https://doi.org/10.1186/1936-6434-6-30
  53. Nagahama, N., Bach, H.G., Manifesto, M.M. & Fortunato, R.H. (2016) Valeriana gaimanensis (Valerianaceae nom. conserv.), A new species from the Patagonian semi-arid desert, Argentina. Systematic Botany 41 (1): 245–251. https://doi.org/10.1600/036364416X690714
  54. Özüdoğru, E.A., Kaya, E., Kırdök, E. & İşsever Öztürk, S. (2011) In vitro propagation from young and mature explants of thyme (Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. In Vitro Cellular & Developmental Biology-Plant 47: 309–320. https://doi.org/10.1007/s11627-011-9347-6
  55. Pakseresht, F., Talebi, R. & Karami, E. (2013) Comparative assessment of ISSR, DAMD and SCoT markers for evaluation of genetic diversity and conservation of landrace chickpea (Cicer arietinum L.) genotypes collected from north-west of Iran. Physiology and Molecular Biology of Plants 19 (4): 563–574. https://doi.org/10.1007/s12298-013-0181-7
  56. Patwardhan, A., Ray, S. & Roy, A. (2014) Molecular Markers in Phylogenetic Studies—A Review. Journal of Phylogenetics and Evolutionary Biology 2: 131–140. https://doi.org/10.4172/2329-9002.1000131
  57. Penneckamp, D.N. (2020) Valeriana nahuelbutae sp. nov. (Caprifoliaceae), a new endemic plant from Nahuelbuta mountain range in central-south Chile. Phytotaxa 441 (2): 217–220. https://doi.org/10.11646/phytotaxa.441.2.9
  58. Perrino, E.V. & Perrino, P. (2020) Crop wild relatives: know how past and present to improve future research, conservation and utilization strategies, especially in Italy: a review. Genetic Resource and Crop Evolution 67 (5): 1067–1105. https://doi.org/10.1007/s10722-020-00930-7
  59. Perrino, E.V. & Wagensommer, R.P. (2022) Crop wild relatives (CWRs) threatened and endemic to Italy: Urgent actions for protection and use. Biology 11: 193. https://doi.org/10.3390/biology11020193
  60. Persson, C., Erıksen, B., Álvaro, P., Zapata, J.N., Thomas, C. & Sklenář, P. (2023) Three new species of Valeriana (Valerianoideae, Caprifoliaceae) from southern Ecuador. Phytotaxa 579 (1): 47–53. https://doi.org/10.11646/phytotaxa.579.1.5
  61. Planchon, J.E. (1887) Monographie des Ampélidées vrais. In: de Candolle, A.F.P.P. & de Candolle, C. (Eds.) Monographiae Phanaerogamarum, 5. Sumptibus G. Masson, Paris, pp. 305–654.
  62. Porter, A.H. & Johnson, N.A. (2002) Speciation despite gene flow when developmental pathways evolve. Evolution 56 (11): 2103–2111. https://doi.org/10.1111/j.0014-3820.2002.tb00136.x
  63. Rieseberg, L.H. & Willis, J.H. (2007) Plant speciation. Science 317 (5840): 910–914. https://doi.org/10.1126/science.1137729
  64. Robinson, J., Kyriazis, C.C., Yuan, S.C. & Lohmueller, K.E. (2023) Deleterious variation in natural populations and implications for conservation genetics. Annual Review of Animal Biosciences 11: 93–114. https://doi.org/10.1146/annurev-animal-080522-093311
  65. Shcherbakov, V.P. (2010) Biological species is the only possible form of existence for higher organisms: the evolutionary meaning of sexual reproduction. Biology Direct 5: 14–36. https://doi.org/10.1186/1745-6150-5-14
  66. Siti-Munirah MY, Dome N (2023) Thismia kenyirensis (Thismiaceae), a new species from Taman Negeri Kenyir, Terengganu, Peninsular Malaysia. PhytoKeys 221: 61–72. https://doi.org/10.3897/phytokeys.221.98571
  67. Sun, S., Coelho, M.A., David-Palma, M., Priest, S.J. & Heitman, J. (2019) The evolution of sexual reproduction and the mating-type locus: Links to pathogenesis of Cryptococcus human pathogenic fungi. Annual Review of Genetics 53: 417–444. https://doi.org/10.1146/annurev-genet-120116-024755
  68. Swanepoel, W., Cauwer, V. de & Van Wyk, A.E. (2021) A new rheophytic species of Syzygium (Myrtaceae) from the lower Kunene River of Angola and Namibia. Phytotaxa 491 (4): 281–290. https://doi.org/10.11646/phytotaxa.491.4.3
  69. Targioni Tozzetti, O. (1810) Arisarum vulgare. Annali del Museo Imperiale di Fisica e Storia Naturale di Firenze 2: 67.
  70. Teillier, S., Lund, R., Zuloaga, F.O. (2020) Valeriana corynodes (Caprifoliaceae), nueva especie para la Flora de Chile. Darwiniana 8 (1): 410–413. https://doi.org/10.14522/darwini­ana.2020.81.897
  71. Thiers, B. (2024) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available from: http://sweetgum.nybg.org/science/ih/ (accessed 5 April 2024)
  72. Tenore, M. (1815) Flora napolitana, ossia descrizione delle piante indigene del regno di Napoli, e delle più rare specie di piante esotiche coltivate ne’ giardini, vol. 1. Nella Stamperia Reale, Napoli, 324 pp.
  73. Villarroel, A.E., Menegoz, K., Le Quesne, C. & Moreno-Gonzalez, R. (2022) Valeriana praecipitis (Caprifoliaceae), a species new to science and endemic to Central Chile. PhytoKeys 189: 81–98. https://doi.org/10.3897/phytokeys.189.73959
  74. Villars, D. (1786) Histoire des Plantes de Dauphiné 1. Chez l’auteur & chez les libraires, etc., Grenoble, 467 pp. https://doi.org/10.5962/bhl.title.116232
  75. Vogt, G. (2022) Environmental adaptation of genetically uniform organisms with the help of epigenetic mechanisms-an insightful perspective on ecoepigenetics. Epigenomes 7 (1): 1. https://doi.org/10.3390/epigenomes7010001
  76. Wagensommer, R.P. & Venanzoni, R. (2021) Geranium lucarinii sp. nov. and re-evaluation of G.kikianum (Geraniaceae). Phytotaxa 489 (3): 252–262. https://doi.org/10.11646/phytotaxa.489.3.2
  77. Weberling, F. & Bittrich, V. (2016) Valerianaceae. In: Kadereit, J.W. & Bittrich, V. (Eds.) The Families and Genera of Vascular Plants. XIV. Flowering Plants-Eudicots: Aquifoliales, Boraginales, Bruniales, Dipsacales, Escalloniales, Garryales, Paracryphiales, Solanales (except Convolvulaceae), Icacinaceae, Metteniusaceae, Vahliaceae. Springer-Verlag, Berlin, pp. 385–401. https://doi.org/10.1007/978-3-319-28534-4_35
  78. Yüzer, Ö., Doğaç, E., Tonguç, A. & Günenç, E. (2023) ISSR-Based Population Genetic Structure of Some Turkish Honeybee (Apis mellifera L., 1758) Populations. Turkish Journal of Bioscience and Collections 7 (2): 83–90. https://doi.org/10.26650/tjbc.1326451