Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-06-12
Page range: 249-260
Abstract views: 5
PDF downloaded: 0

Transferring Peucedanum macilentum (Apioideae, Apiaceae) to Ligusticopsis based on morphological and molecular evidences

School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
Yunnan Academy of Forestry and Grassland, Kunming 650201, China. Gaoligong Mountain, Forest Ecosystem, Observation and Research Station of Yunnan Province, Kunming 650225, China. Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming 650506, China.
School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China. Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming 650500, China.
Apiaceae Ligusticopsis new combination Peucedanum macilentum Eudicots

Abstract

Peucedanum macilentum is a less-studied species endemic to China, previously assigned to the genus Kitagawia. To elucidate its taxonomic affinity, morphological and molecular analyses were conducted. Morphologically, Peucedanum macilentum resembles Ligusticopsis species in several diagnostic characters of the stem base clothed in fibrous sheaths, pinnate bracteoles, conspicuous calyx teeth, strongly dorsally compressed fruits, as well as more vittae on the commissure. Phylogenetic analyses of nrDNA ITS and plastome sequences further reveal that P. macilentum is distant from Kitagawia but nested within Ligusticopsis. Therefore, in the basis of the morphological and molecular evidences, Peucedanum macilentum is transferred into Ligusticopsis and a new combination, Ligusticopsis macilenta, is proposed.

References

  1. Boissieu, H. de (1903) Les ombellifères de China d'après les collections du muséum d'histoire naturelle de paris. Bulletin de l'Herbier Boissier 10: 837–856.
  2. Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  3. Candolle, A.P. de (1830) Peucedanum. In: Candolle, A.P. de (Ed.) Prodromus systematis naturalis regni vegetabilis, sive, Enumeratio contracta ordinum generum specierumque plantarum huc usque cognitarium, juxta methodi naturalis, normas digesta. Sumptibus Sociorum Treuttel et Würtz, Paris, pp. 176–183. https://doi.org/10.5962/bhl.title.286
  4. Chen, F.L. & Deng, Y.F. (2019) Peucedanum shanianum, a new replaced name for P. rubricaule R.H. Shan & M.L. Sheh (Apiaceae). Phytotaxa 387: 267–268. https://doi.org/10.11646/phytotaxa.387.3.9
  5. China Plant BOL Group, Li, D.Z., Gao, L.M., Li, H.T., Wang, H., Ge, X.J., Liu, J.Q., Chen, Z.D., Zhou, S.L., Chen, S.L., Yang, J.B., Fu, C.X., Zeng, C.X., Yan, H.F., Zhu, Y.J., Sun, Y.S., Chen, S.Y., Zhao, L., Wang, K., Yang, T. & Duan, G.W. (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences 108: 19641–19646. https://doi.org/10.1073/pnas.1104551108
  6. Deng, J.J., Liu, C.K., Zhou, S.D. & He, X.J. (2022) Morphological and molecular evidence gives insight into the taxonomic position of Peucedanum pubescens (Apiaceae, Selineae). PhytoKeys 213: 19–33. https://doi.org/10.3897/phytokeys.213.89784
  7. Diels, F.L.E. (1912) Plantae chinenses Forrestianae. New and imperfectly known species. Notes from the Royal Botanic Garden Edinburgh 5: 161–304.
  8. Downie, S.R. & Jansen, R.K. (2015) A comparative analysis of whole plastid genomes from the Apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions. Systematic Botany 40: 336–351. https://doi.org/10.1600/036364415X686620
  9. Doyle, J.J. & Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
  10. Feng, T., Downie, S.R., Yu, Y., Zhang, X.M., Chen, W.W., He, X.J. & Liu, S. (2009) Molecular systematics of Angelica and allied genera (Apiaceae) from the Hengduan Mountains of China based on nrDNA ITS sequences: phylogenetic affinities and biogeographic implications. Journal of Plant Research 122: 403–414. https://doi.org/10.1007/s10265-009-0238-4
  11. Franchet, A.R. (1894) Notes sur quelques Ombellifères du Yunnan. Bulletin de la Société Philomatique de Paris 8: 106–146.
  12. Gou, W., Guo, X.L., Yu, Y., Zhou, S.D. & He, X.J. (2019) The complete chloroplast genome of Meeboldia yunnanensis (Apiaceae). Mitochondrial DNA Part B 4: 4176–4177. https://doi.org/10.1080/23802359.2019.1644217
  13. Jia, S.B., Guo, X.L., Zhou, S.D. & He, X.J. (2019) Hansenia pinnatiinvolucellata is conspecific with H. weberbaueriana (Apiaceae) based on morphology and molecular data. Phytotaxa 418: 203–210. https://doi.org/10.11646/phytotaxa.418.2.5
  14. Jin, J.J., Yu, W.B., Yang, J.B., Song, Y., DePamphilis, C.W., Yi, T.S. & Li, D.Z. (2020) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21: 241. https://doi.org/10.1101/256479
  15. Kang, L., Xie, D.F., Xiao, Q.Y., Peng, C., Yu, Y. & He, X.J. (2019) Sequencing and analyses on chloroplast genomes of Tetrataenium candicans and two allies give new insights on structural variants, DNA barcoding and phylogeny in Apiaceae subfamily Apioideae. PeerJ 7: e8063. https://doi.org/10.7717/peerj.8063
  16. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
  17. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B. & Meintjes, P. (2012) Geneious basic: an integratedand extendable desktop software platform for the organization andanalysis of sequence data. Bioinformatics 28: 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  18. Kljuykov, E.V. & Lavrova, T.V. (1994) On systematic position of some species of the genera Pleurospermum and Trachydium (Umbelliferae). Botanicheskii Zhurnal 79: 102–108.
  19. Lee, C.S. & Downie, S.R. (2006) Phylogenetic relationships within Cicuta (Apiaceae tribe Oenantheae) inferred from nuclear rDNA ITS and cpDNA sequence data. Botany 84: 453–468. https://doi.org/10.1139/b06-016
  20. Lei, J.Q., Cai, J., Zhou, S.D. & He, X.J. (2023) Ligusticopsis miyiensis (Apioideae, Apiaceae), a new combination from China revealed by morphological and molecular evidence. Phytotaxa 591: 273–282. https://doi.org/10.11646/phytotaxa.591.4.4
  21. Lei, J.Q., Liu, C.K., Cai, J., Price, M., Zhou, S.D. & He, X.J. (2022) Evidence from phylogenomics and morphology provide insights into the phylogeny, plastome evolution, and taxonomy of Kitagawia. Plants 11: 3275. https://doi.org/10.3390/plants11233275
  22. Leute, G.-H. (1969) Untersuchungen über den verwandtschaftskreis der gattung Ligusticum L. (Umbelliferae) I Teil. Annalen des Naturhistorischen Museums in Wien 73: 55–98.
  23. Linnaeus, C. (1753) Species plantarum 1. Laurentii Salvii, Stockholm, 560 pp. https://doi.org/10.5962/bhl.title.669
  24. Li, J., Xie, D.F., Guo, X.L., Zheng, Z.Y., He, X.J. & Zhou, S.D. (2020) Comparative analysis of the complete plastid genome of five Bupleurum species and new insights into DNA barcoding and phylogenetic relationship. Plants 9: 543. https://doi.org/10.3390/plants9040543
  25. Liu, C.K., Lei, J.Q., Jiang, Q.P., Zhou, S.D. & He, X.J. (2022) The complete plastomes of seven Peucedanum plants: Comparative and phylogenetic analyses for the Peucedanum genus. BMC Plant Biology 22: 101. https://doi.org/10.1186/s12870-022-03488-x
  26. Liu, Z.W., Gao, Y.Z. & Zhou, J. (2019) Molecular authentication of the medicinal species of Ligusticum (Ligustici Rhizoma et Radix, “Gao-ben”) by integrating non-coding internal transcribed spacer 2 (ITS2) and its secondary structure. Frontiers in Plant Science 10: 417936. https://doi.org/10.3389/fpls.2019.00429
  27. Li, Y.S., Geng, M.L., Xu, Z.L., Wang, Q., Li, L.L., Xu, M. & Li, M.M. (2019) The complete plastome of Peucedanum praeruptorum (Apiaceae). Mitochondrial DNA Part B 4: 3612–3613. https://doi.org/10.1080/23802359.2019.1676180
  28. Li, Z.X., Guo, X.L., Price, M., Zhou, S.D. & He, X.J. (2022) Phylogenetic position of Ligusticopsis (Apiaceae, Apioideae): evidence from molecular data and carpological characters. AoB Plants 14: 1–13. https://doi.org/10.1093/aobpla/plac008
  29. Peery, R. (2015) Understanding angiosperm genome interactions and evolution: insights from sacred lotus (Nelumbo nucifera) and the carrot family (Apiaceae). University of Illinois at Urbana-Champaign, Champaign-Urbana, 149 pp.
  30. Pimenov, M.G. (2017) Updated checklist of Chinese Umbelliferae: nomenclature, synonymy, typification, distribution. Turczaninowia 20: 106–239. https://doi.org/10.14258/turczaninowia.20.2.9
  31. Pimenov, M.G. (1986) Kitagawia–a new Asiatic genus of the family Umbelliferae. Botanicheskii Zhurnal 71: 942–949.
  32. Pimenov, M.G., Kljuykov, E.V. & Ostroumova, T.A. (2001) Towards a clarification in the taxonomy of Sino-Himalayan species of Selinum L. s. l. (Umbelliferae). The genus Oreocome Edgew. Willdenowia 31: 101–124. https://doi.org/10.3372/wi.31.31109
  33. Pimenov, M.G. & Leonov, M.V. (1993) The genera of the Umbelliferae: a nomenclator. Royal Botanic Gardens, Kew, 164 pp.
  34. Plunkett, G.M., Pimenov, M.G., Reduron, J.-P., Kljuykov, E.V., van Wyk, B.-E., Ostroumova, T.A., Henwood, M.J., Tilney, P.M., Spalik, K., Watson, M.F., Lee, B.-Y., Pu, F.-D., Webb, C.J., Hart, J.M., Mitchell, A.D. & Muckensturm, B. (2018) Apiaceae. In: Kadereit, J.W. & Bittrich, V. (Eds.) The Families and Genera of Vascular Plants. Springer Nature, Cham, pp. 9–206. https://doi.org/10.1007/978-3-319-93605-5
  35. Pu, F.T. (1991) A revision of the genus Ligusticum L. (Umbelliferae) in China. Journal of Systematics and Evolution 29: 385–393.
  36. Rao, G.X., Song, H.Y., Wang, X.W., Liu, Q.X. & Sun, H.D. (1997) Coumarin constituents of Peucedanum macilentum Franch. Matural Product Research and Development 9: 34–36.
  37. Ren, T., Li, Z.X., Xie, D.F., Gui, L.J., Peng, C., Wen, J. & He, X.J. (2020) Plastomes of eight Ligusticum species: characterization, genome evolution, and phylogenetic relationships. BMC Plant Biology 20: 1–14. https://doi.org/10.1186/s12870-020-02696-7
  38. Ren, T., Xie, D., Peng, C., Gui, L., Price, M., Zhou, S.D. & He, X.J. (2022) Molecular evolution and phylogenetic relationships of Ligusticum (Apiaceae) inferred from the whole plastome sequences. BMC Ecology and Evolution 22: 1–14. https://doi.org/10.1186/s12862-022-02010-z
  39. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  40. Schmiderer, C., Franz, C. & Novak, J. (2012) DNA-based identification of Peucedanum ostruthium by high-resolution-melting analysis (HRM). Planta Medica 78: 124. https://doi.org/10.1055/s-0032-1307632
  41. Sheh, M.L. (1992) Peucedanum. In: Shan, R.H. & Sheh, M.L. (Eds.) Flora Reipublicae Popularis Sinicae 55 (3). Science Press, Beijing, pp. 123–175.
  42. Sheh, M.L., Pu, F.D., Pan, Z.H., Watson, M.F., Cannon, J.F.M., Holmes-Smith, I., Kljuykov, E.V., Phillippe, L.R. & Pimenov, M.G. (2005) Apiaceae. In: Wu, Z.Y., Raven, P.H. & Hong, D.Y. (Eds.) Flora of China 14. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis, pp. 1–205.
  43. Shi, L.C., Chen, H.M., Jiang, M., Wang, L.Q., Wu, X., Huang, L.F. & Liu, C. (2019) CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Research 47: 65–73. https://doi.org/10.1093/nar/gkz345
  44. Shneyer, V.S., Kutyavina, N.G. & Pimenov, M.G. (2003) Systematic relationships within and between Peucedanum and Angelica (Umbelliferae—Peucedaneae) inferred from immunological studies of seed proteins. Plant Systematics and Evolution 236: 175–194. https://doi.org/10.1007/s00606-002-0239-4
  45. Song, B.N., Liu, C.K., Xie, D.F., Xiao, Y.L., Tian, R.M., Li, Z.X., Zhou, S.D. & He, X.J. (2022) Plastid phylogenomic analyses reveal the taxonomic position of Peucedanum franchetii. Plants 12: 97. https://doi.org/10.3390/plants12010097
  46. Spalik, K., Reduron, J.-P. & Downie, S.R. (2004) The phylogenetic position of Peucedanum sensu lato and allied genera and their placement in tribe Selineae (Apiaceae, subfamily Apioideae). Plant Systematics and Evolution 243: 189–210. https://doi.org/10.1007/s00606-003-0066-2
  47. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  48. Sun, N., He, X.J. & Zhou, S.D. (2008) Morphological cladistic analysis of Ligusticum (Umbelliferae) in China. Nordic Journal of Botany 26: 118–128. https://doi.org/10.1111/j.0107-055X.2008.00144.x
  49. Wang, M.L., Wang, X., Sun, J.H., Wang, Y.H., Ge, Y., Dong, W.P., Yuan, Q.J. & Huang, L.Q. (2021) Phylogenomic and evolutionary dynamics of inverted repeats across Angelica plastomes. BMC Plant Biology 21: 1–12. https://doi.org/10.1186/s12870-020-02801-w
  50. Wang, Q.Z., He, X.J., Zhou, S.D., Wu, Y.K., Yu, Y. & Pang, Y.L. (2008) Phylogenetic inference of the genus Bupleurum (Apiaceae) in Hengduan Mountains based on chromosome counts and nuclear ribosomal DNA ITS sequences. Journal of Systematics and Evolution 46: 142–154. https://doi.org/10.3724/SP.J.1002.2008.07107
  51. Weitzel, C., Ronsted, N., Spalik, K. & Simonsen, H.T. (2014) Resurrecting deadly carrots: towards a revision of Thapsia (Apiaceae) based on phylogenetic analysis of nrITS sequences and chemical profiles. Botanical Journal of the Linnean Society 174: 620–636. https://doi.org/10.1111/boj.12144
  52. Wen, J., Xie, D.F., Price, M., Ren, T., Deng, Y.Q., Gui, L.J., Guo, X.L. & He, X.J. (2021) Backbone phylogeny and evolution of Apioideae (Apiaceae): New insights from phylogenomic analyses of plastome data. Molecular Phylogenetics and Evolution 161: 107183. https://doi.org/10.1016/j.ympev.2021.107183
  53. White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR protocols, a guide to methods and applications. Academic Press, San Diego, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  54. Wick, R.R., Schultz, M.B., Zobel, J. & Holt, K.E. (2015) Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31: 3350–3352. https://doi.org/10.1093/bioinformatics/btv383
  55. Winter, P.J.D., Magee, A.R., Phephu, N., Tilney, P.M. & Downie, S.R. (2008) A new generic classification for African peucedanoid species (Apiaceae). Taxon 57: 347–364. https://doi.org/10.2307/25066009
  56. Wolff, H. (1929) Umbelliferae Asiaticae novae relictae. II. Repertorium Specierum Novarum Regni Vegetabilis 27: 179–192. https://doi.org/10.1002/fedr.4870270909
  57. Wolff, H. (1930) Umbelliferae Asiaticae novae relictae. III. Repertorium Specierum Novarum Regni Vegetabilis 27: 301–335. https://doi.org/10.1002/fedr.4870271612
  58. Yang, J., Yue, M., Niu, C., Ma, X.F. & Li, Z.H. (2017) Comparative analysis of the complete chloroplast genome of four endangered herbals of Notopterygium. Genes 8: 124. https://doi.org/10.3390/genes8040124
  59. Yuan, C., Zhong, W.J., Mou, F.S., Gong, Y.Y., Pu, D.Q., Ji, P.C., Huang, H.Y., Yang, Z.H. & Zhang, C. (2017) The complete chloroplast genome sequence and phylogenetic analysis of Chuanminshen (Chuanminshen violaceum Sheh et Shan). Physiology and Molecular Biology of Plants 23: 35–41. https://doi.org/10.1007/s12298-016-0395-6
  60. Zhou, J., Gao, Y.Z., Wei, J., Liu, Z.W. & Downie, S.R. (2020) Molecular phylogenetics of Ligusticum (Apiaceae) based on nrDNA ITS sequences: rampant polyphyly, placement of the Chinese endemic species, and a much-reduced circumscription of the genus. International Journal of Plant Sciences 181: 306–323. https://doi.org/10.1086/706851
  61. Zhou, J., Gong, X., Downie, S.R. & Peng, H. (2009) Towards a more robust molecular phylogeny of Chinese Apiaceae subfamily Apioideae: additional evidence from nrDNA ITS and cpDNA intron (rpl16 and rps16) sequences. Molecular Phylogenetics and Evolution 53: 56–68. https://doi.org/10.1016/j.ympev.2009.05.029
  62. Zhou, J. & Liu, Z.W. (2020) The complete chloroplast genome and phylogenetic analysis of Cuminum cyminum. Mitochondrial DNA Part B 5: 1079–1080. https://doi.org/10.1080/23802359.2020.1722037
  63. Zhou, J., Peng, H., Downie, S.R., Liu, Z.W. & Gong, X. (2008) A molecular phylogeny of Chinese Apiaceae subfamily Apioideae inferred from nuclear ribosomal DNA internal transcribed spacer sequences. Taxon 57: 402–416. https://doi.org/10.2307/25066012
  64. Zhou, J., Wang, W.C., Liu, M.Q. & Liu, Z.W. (2014) Molecular authentication of the traditional medicinal plant Peucedanum praeruptorum and its substitutes and adulterants by DNA-barcoding technique. Pharmacognosy Magazine 10: 385–390. https://doi.org/10.4103/0973-1296.141754