Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-05-20
Page range: 193-210
Abstract views: 5
PDF downloaded: 1

Two new species of Infundibulicybe (Omphalinaceae, Agaricales) from northern China

College of Life Sciences, Capital Normal University, Xisanhuanbeilu 105, Haidian, Beijing 100048, China
College of Life Sciences, Capital Normal University, Xisanhuanbeilu 105, Haidian, Beijing 100048, China
Department of Life Sciences, National Natural History Museum of China, Tianqiaonandajie126, Dongcheng, Beijing, 100050, China
College of Life Sciences, Capital Normal University, Xisanhuanbeilu 105, Haidian, Beijing 100048, China
clitocyboid multigene novel taxa taxonomy Fungi

Abstract

Infundibulicybe confusa sp. nov. and I. phaeocentralis sp. nov. were described based on specimens from Shanxi Province in northern China. Morphologically, I. phaeocentralis is similar to I. rufa but the latter is differentiated by its isolated phylogenetic position and varied colors of the basidiomata. Infundibulicybe confusa is similar to I. alkaliviolascens, but I. alkaliviolascens has a pileus that turns violet to purplish pink in KOH and long basidiospores. Our morphological and phylogenetic analyses supported the taxonomic position of the two new species in Infundibulicybe. Additionally, a key to the species of Infundibulicybe in Shanxi Province is provided.

References

  1. Akata, I., Kalyoncu, F., Solak, M.H. & Kalmış, E. (2012) Growth of mycelium of three ectomycorrhizal macrofungi, Infundibulicybe geotropa, Tricholoma anatolicum and Lactarius deliciosus in culture media containing various carbon sources. African Journal of Microbiology Research 6: 3042–3046. https://doi.org/10.5897/AJMR12.196
  2. Alfaro, M.E., Zoller, S. & Lutzoni, F. (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology & evolution 20: 255–266. https://doi.org/10.1093/molbev/msg028
  3. Ali, M., Khan, J., Bashir, H., Niazi, A.R., Sher, H. & Khalid, A.N. (2020) Infundibulicybe macrospora sp. nov. a new and noteworthy species from Himalayan moist temperate forests of Pakistan. Phytotaxa 452: 268–277. https://doi.org/10.11646/phytotaxa.452.4.2
  4. Alvarado, P., Moreau, P.A., Dima, B., Vizzini, A., Consiglio, G., Moreno, G., Setti, L., Kekki, T., Huhtinen, S., Liimatainen, K. & Niskanen, T. (2018a) Pseudoclitocybaceae fam. nov. (Agaricales, Tricholomatineae), a new arrangement at family, genus and species level. Fungal Diversity 90: 109–133. https://doi.org/10.1007/s13225-018-0400-1
  5. Alvarado, P., Moreau, P.A., Sesli, E., Khodja, L.Y., Contu, M. & Vizzini, A. (2018b) Phylogenetic studies on Bonomyces (Tricholomatineae, Agaricales) and two new combinations from Clitocybe. Cryptogamie Mycologie 39: 149–168. https://doi.org/10.7872/crym/v39.iss2.2018.149
  6. Bellù, F. (2012) Clitocybe alkaliviolascens is now an Infundibulicybe: its recombination with additional distribution data. Bresadoliana 1: 3–7.
  7. Binder, M. & Hibbett, D.S. (2003) Oligonucleotides. Worcester (MA): The Education Network of Clark University. Available from: http://www2.clarku.edu/faculty/dhibbett/Protocols_Folder/Primers/Primers.htm (accessed: 18 Sep 2003).
  8. Binder, M., Larsson, K.H., Matheny, P.B. & Hibbett, D.S. (2010) Amylocorticiales ord. nov. and Jaapiales ord. nov.: Early diverging clades of Agaricomycetidae were dominated by corticioid forms. Mycologia 102: 865–880. https://doi.org/10.3852/09-288
  9. Bjorbækmo, M.F.M., Carlsen, T., Brysting, A., Vrålstad, T., Høiland, K., Ugland, K.I., Geml, J., Schumacher, T. & Kauserud, H. (2010) High diversity of root associated fungi in both alpine and arctic Dryas octopetala. BMC Plant Biology 10: 1–12. https://doi.org/10.1186/1471-2229-10-244
  10. Carrière, E.A. (1867) Traite General des Coniferes, ed. 2: 510.
  11. Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  12. Engler, H.G.A. (1926) Natürlichen Pflanzenfamilien, ed. 2. Vol. 13. pp. 327.
  13. Gardes, M. & Bruns, T.D. (1993) ITS primers with enhanced specificity for Basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  14. Geml, J., Timling, I., Robinson, C.H., Lennon, N., Nusbaum, H.C., Brochmann, C., Noordeloos, M.E. & Taylor, D.L. (2012) An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA. Journal of Biogeography 30: 74–88. https://doi.org/10.1111/J.1365-2699.2011.02588.X
  15. Giusti, A., Ricci, E., Gasperetti, L., Galgani, M., Polidori, L., Verdigi, F., Narducci, R. & Armani, A. (2021) Building of an Internal Transcribed Spacer (ITS) Gene Dataset to Support the Italian Health Service in Mushroom Identification. Foods 10: 1–20. https://doi.org/10.3390/foods10061193
  16. Harmaja, H. (2003) Notes on Clitocybe s. lato (Agaricales). Annales Botanici Fennici 40: 213–218.
  17. Harmaja, H. (1969) The genus Clitocybe (Agaricales) in Fennoscandia. Karstenia 10: 5–168. https://doi.org/10.29203/ka.1969.62
  18. He, Z.M. & Yang, Z.L. (2022) The genera Bonomyces, Harmajaea and Notholepista from Northwestern China: two new species and a new record. Mycological progress 21: 1–16. https://doi.org/10.1007/s11557-022-01786-0
  19. He, Z.M. & Yang, Z.L. (2023) A contribution to the knowledge of the genus Infundibulicybe (Tricholomatineae, Agaricales) in China: Two new species and five redescribed taxa. Mycologia 115: 693–713. https://doi.org/10.1080/00275514.2023.2226893
  20. He, Z.M., Chen, Z.H., Bau, T., Wang, G.S. & Yang, Z.L. (2023) Systematic arrangement within the family Clitocybaceae (Tricholomatineae, Agaricales): phylogenetic and phylogenomic evidence, morphological data and muscarine-producing innovation. Fungal Diversity 123: 1–47. https://doi.org/10.1007/s13225-023-00527-2
  21. Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192. https://doi.org/10.1093/sysbio/42.2.182
  22. Ishaq, M., Khan, M.B., Ullah, S., Fiaz, M. & Khalid, A.N. (2019) Infundibulicybe kotanensis sp. nov. (Tricholomataceae), a new species from Buner, Pakistan. Phytotaxa 418: 195–202. https://doi.org/10.11646/phytotaxa.418.2.4
  23. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
  24. Kirk, P.M., Cannon, P.F., Minter, D.W. & Stalpers, J.A. (2008) Dictionary of the fungi. Oxford University Press, Wallingford, UK, 341 pp.
  25. Kretzer, A.M. & Bruns, T.D. (1999) Use of atp6 in fungal phylogenetics: an example from the Boletales. Molecular Phylogenetics & Evolution 13: 483–492. https://doi.org/10.1006/mpev.1999.0680
  26. Liu, H., Guo, S. & Fan, L. (2018) Infundibulicybe hongyinpan sp. nov., a well-known edible fungus from Shanxi based on both nrDNA-ITS and morphological analysis. Journal of Shanxi University 42: 275–280. https://doi.org/10.13451/j.cnki.shanxi.univ (nat.sci.).2018.03.16.007
  27. Maeta, K., Ochi, T., Tokimoto, K., Shimomura, N., Maekawa, N., Kawaguchi, N., Nakaya, M., Kitamoto, Y. & Aimi, T. (2008) Rapid Species Identification of Cooked Poisonous Mushrooms by Using Real-Time PCR. Applied and Environmental Microbiology 74: 3306–3309. https://doi.org/10.1128/AEM.02082-07
  28. Mast. (1903) The Gardeners’ chronicle. 33: 133.
  29. Mast. (1906) The Journal of the Linnean Society. Botany 37: 419.
  30. Matheny, P.B. (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Molecular Phylogenetics & Evolution 35: 1–20. https://doi.org/10.1088/1126-6708/2004/10/014
  31. Matheny, P.B., Curtis, J.M., Hofstetter, V., Aime, M.C., Moncalvo, J.M., Ge, Z.W., Yang, Z.L., Slot, J.C., Ammirati, J.F., Baroni, T.J., Bougher, N.L., Hughes, K.W., Lodge, D.J., Kerrigan, R.W., Seidl, M.T., Aanen, D.K., DeNitis, M., Daniele, G.M., Desjardin, D.E., Kropp, B.R., Norvell, L.L., Parker, A., Vellinga, E.C., Vilgalys, R. & Hibbett, D.S. (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98: 982–995. https://doi.org/10.3852/mycologia.98.6.982
  32. Matheny, P.B., Liu, Y.J., Ammirati, J.F. & Hall, B.D. (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). American Journal of Botany 89: 688–698. https://doi.org/10.3732/ajb.89.4.688
  33. Murrill, W.A. (1915) The genus Clitocybe in North America. Mycologia 7: 256–283. https://doi.org/10.1080/00275514.1915.12021718
  34. Nylander, J.A.A. (2004) MrModeltest 2.2. Computer software distributed by the University of Uppsala. Sweden: Evolutionary Biology Centre.
  35. Osmundson, T.W., Robert, V.A., Schoch, C.L., Baker, L.J., Smith, A., Robich, G., Mizzan, L. & Garbelotto, M.M. (2013) Filling Gaps in Biodiversity Knowledge for Macrofungi: Contributions and Assessment of an Herbarium Collection DNA Barcode Sequencing Project. PLOS ONE 8: 1–8. https://doi.org/10.1371/journal.pone.0062419
  36. Page, R.D. (2001) TreeView. Glasgow University, Glasgow.
  37. Quélet, L. (1872) Les Champignons du Jura et des Vosges. Mémoires de la Société d'Émulation de Montbéliard 5: 43–332.
  38. Rehner, S.A. & Buckley, E. (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98. https://doi.org/10.3852/mycologia.97.1.84
  39. Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  40. Sargent, C.S. (1914) Plantae Wilsonianae 2: 28.
  41. Singer, R. (1956) New genera of fungi. VII. Mycologia 48: 719–727. https://doi.org/10.1080/00275514.1956.12024585
  42. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  43. Staude, F. (1857) Die Schwämme Mitteldeutschlands, in besondere des Herzogthums. pp. 1–150.
  44. Tian, H.M, Liu, T.Z., Li, G.L. & Bateer. (2015) Morphology and ITS sequencing analysis of Russulaceae in Inner Mongolia. Journal of Inner Mongolia University (Natural Science Edition) 46: 520–526. https://doi.org/10.13484/j.nmgdxxbzk.20150512
  45. Tomáš, V., Miroslav, K., Lucia, Ž., Tomáš, Z. & Petr, B. (2016) The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Molecular Ecology Resources 16: 388–401. https://doi.org/10.1111/1755-0998.12456
  46. Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  47. Vizzini, A., Contu, M., Musumeci, E. & Ercole, E. (2011) A new taxon in the Infundibulicybe gibba complex (Basidiomycota, Agaricales, Tricholomataceae) from Sardinia (Italy). Mycologia 103: 203–208. https://doi.org/10.3852/10-137
  48. Vizzini, A., Alvarado, P., Consiglio, G., Marchetti, M. & Xu, J. (2024) Family matters inside the order Agaricales: systematic reorganization and classification of incertae sedis clitocyboid, pleurotoid and tricholomatoid taxa based on an updated 6-gene phylogeny. Studies in Mycology 107: 67–148. https://doi.org/10.3114/sim.2024.107.02
  49. Vu, D., Groenewald, M., de Vries, M., Gehrmann, T., Stielow, B., Eberhardt, U., Al-Hatmi, A., Groenewald, J.Z., Cardinali, G., Houbraken, J., Boekhout, T., Crous, P.W., Robert, V. & Verkley, G.J.M. (2018) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
  50. Walther, G., Garnica, S. & Weiß, M. (2005) The systematic relevance of conidiogenesis modes in the gilled Agaricales. Mycological Research 109: 525–544. https://doi.org/10.1017/S0953756205002868
  51. Wei, T.Z., Li, B.B., Wang, W.J. & Yao, Y.J. (2015) Infundibulicybe alkaliviolascens, a new agaric record of China. Journal of Fungal Research 13: 284–288. https://doi.org/10.13341/j.jfr.2014.2063
  52. White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A guide to Methods and Applications 18: 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  53. Xu, J.Z., Zhao, W., Yu, X.D., Idrees, M., Li, Y. & Qin, J.C. (2022) Infundibulicybe trachyspora, a new species from northeastern China based on morphology and molecular phylogeny. Current Microbiology 79: 1–9. https://doi.org/10.1007/s00284-022-02808-6
  54. Zhao, Q.I., Hao, Y.J., Liu, J.K., Hyde, K.D., Cui, Y.Y., Brooks, S. & Zhao, Y.C. (2016) Infundibulicybe rufa sp. nov. (Tricholomataceae), a reddish-brown species from southwestern China. Phytotaxa 266: 134–140. https://doi.org/10.11646/phytotaxa.266.2.7