Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-04-30
Page range: 1-31
Abstract views: 90
PDF downloaded: 2

MORPHOMETRIC CHARACTERIZATION AND THE FIRST TAXONOMIC SYNTHESIS OF TERRESTRIAL CYANOBACTERIA FROM THE ATLANTIC FOREST IN NORTHEASTERN BRAZIL

Graduate Program in Biodiversity (PPGBio), Federal Rural University of Pernambuco, Rua D. Manoel de Medeiros, S/N, Dois Irmãos, CEP 52171–030, Recife, PE, Brazil
Graduate Program in Biodiversity (PPGBio), Federal Rural University of Pernambuco, Rua D. Manoel de Medeiros, S/N, Dois Irmãos, CEP 52171–030, Recife, PE, Brazil
Graduate Program in Biodiversity (PPGBio), Federal Rural University of Pernambuco, Rua D. Manoel de Medeiros, S/N, Dois Irmãos, CEP 52171–030, Recife, PE, Brazil
Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida - IFAS, 3205 College Avenue, Davie, FL 33314, USA
Graduate Program in Biodiversity (PPGBio), Federal Rural University of Pernambuco, Rua D. Manoel de Medeiros, S/N, Dois Irmãos, CEP 52171–030, Recife, PE, Brazil
Biodiversity Brazil Cyanophyceae subaerophyte tropical Algae

Abstract

Cyanobacteria are very morphological diverse and the taxonomic inventories are the basis of the knowledge about their biodiversity. However, these studies have decreased in the last years, mainly due to advances in molecular techniques, evenness these tools have their limitations, like sequence libraries. In order to reveal the importance of taxonomic inventories to little known organisms and unexplored areas, the present study was carried out with terrestrial cyanobacteria from the Atlantic Forest of northeastern Brazil, compared to results with the state of the art of this group in the country. A total of 60 infrageneric taxa were found and 62.8% of identified species were new records to northeastern Brazil. Most of the previous studies were performed in the state of São Paulo (>70%) and half of the country has no records of terrestrial cyanobacteria due to the lack of studies. Thus, taxonomic surveys are still important to understand the cyanobacterial distribution and to characterize rare taxa and the biodiversity from unstudied areas and habitats.

References

  1. Aguiar, R., Fiore, M.F., Franco, M.W., Ventrella, M.C., Lorenzi, A.S., Vanetti, C.A. & Alfenas, A.C. (2008) A novel epiphytic cyanobacterial species from the genus Brasilonema causing damage to Eucalyptus leaves. Journal of Phycology 44: 1322–1334. https://doi.org/10.1111/j.1529-8817.2008.00584.x
  2. Alvarenga, D.O., Andreote, A.P.D., Branco, L.H.Z. & Fiore, M.F. (2017) Kryptousia macronema gen. nov., sp. nov. and Kryptousia microlepis sp. nov., nostocalean cyanobacteria isolated from phyllospheres. International Journal of Systematic and Evolutionary Microbiology 67: 3301–3309. https://doi.org/10.1099/ijsem.0.002109
  3. Anagnostidis, K. & Komárek, J. (1988) Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Archiv für Hydrobiologie, Supplement 80 (1–4): 327–472.
  4. Anagnostidis, K. (2001) Nomenclatural changes in cyanoprokaryotic order Oscillatoriales. Preslia 73: 359–375.
  5. Berrendero-Gómez, E., Johansen, J.R., Kaštovský, J., Bohunická, M. & Čapková, K. (2016) Macrochaete gen. nov. (Nostocales, Cyanobacteria), a taxon morphologically and molecularly distinct from Calothrix. Journal of Phycology 52: 638–655. https://doi.org/10.1111/jpy.12425
  6. Bornet, É. & Flahault, C. (1886 ‘1887’) Revision des Nostocacées hétérocystées contenues dans les principaux herbiers de France (Troisième fragment), 5. Annales des Sciences Naturelles, Botanique, Paris, France, pp. 51–129.
  7. Bornet, E. & Flahault, C. (1888) Revision des Nostocacées hétérocystées contenues dans les principaux herbiers de France, 7. Annales des Sciences Naturelles, Botanique, Paris, France, pp. 177–262.
  8. Borzì, A. (1892) Alghe d’acqua dolce della Papuasia raccolte su cranii umani dissepolti. Nuova Notarisia 3: 35–53.
  9. Borzì, A. (1914) Studi sulle Mixoficee. I. Cenni generali—Systema Myxophycearum. Nuovo Giornale Botanico Italiano Ser 2 21: 307–360.
  10. Branco, L.H.Z., de P Azevedo, M.T., Sant’Anna, C.L. & Komárek, J. (2006) New morphospecies of Symplocastrum (Phormidiaceae, Oscillatoriales) from aerophytic habitats in Brazil. Algological studies 121: 23–33.https://doi.org/10.1127/1864-1318/2006/0121-0023
  11. Branco, L.H.Z. & Montejano, G. (2006) A new morphotype of Blennothrix (Cyanoprokaryota, Oscillatoriales) from streams of Brazil and Mexico. Algological studies 121: 35–42. https://doi.org/10.1127/1864-1318/2006/0121-0035
  12. Cai, F., Li, S., Chen, J. & Li, R. (2019) Gansulinema gen. nov. and Komarkovaeasiopsis gen. nov.: Novel Oculatellacean genera (Cyanobacteria) isolated from desert soils and hot spring. Journal of Phycology 60 (2): 432–446. https://doi.org/10.1111/jpy.13426
  13. Chen, M.Y., Teng, W.K., Zhao, L., Hu, C.X., Zhou, Y.K., Han, B.P., Song, L.-R. & Shu, W.-S. (2021) Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. The ISME Journal 15: 211–227. https://doi.org/10.1038/s41396-020-00775-z
  14. Desikachary, T.V. (1959) Cyanophyta. In: Algae, M.O. (Ed.) Randhawa, M.S., I.C.A.R. Indian Council of Agricultural Research, New Delhi, 686 pp.
  15. De Toni, GB (1892) Flora algológica de Veneza. Atti del Reale Istituto veneto di scienze, letra e artigo,Venice, Italy 50 (3): 385–436, 645–692.
  16. Drouet, F. (1937) The Brazilian Myxophyceae. I. American Journal of Botany 24: 598–608. https://doi.org/10.1002/j.1537-2197.1937.tb09153.x
  17. Dvořák, P., Casamatta, D.A., Hašler, P., Jahodářová, E., Norwich, A.R. & Poulíčková, A. (2017) Diversity of the cyanobacteria. In: Hallenbeck, P.C. (Ed.) Modern Topics in the Phototrophic Prokaryotes. Springer, pp. 3–46. https://doi.org/10.1007/978-3-319-46261-5
  18. Dvořák, P., Hasler, P., Casamatta, D. & Poulíčková, A. (2021) Review Underestimated cyanobacterial diversity: trends and perspectives of research in tropical environments. Journal of the Czech Phycological Society 21: 110–127. https://doi.org/10.5507/fot.2021.009
  19. Dvořák, P., Casamatta, D.A., Poulíčková, A., Hašler, P., Ondřej, V. & Sanges, R. (2014) Synechococcus: 3 billion years of global dominance. Molecular ecology 23: 5538–5551. https://doi.org/10.1111/mec.12948
  20. Eichler, A.W. (1886) Syllabus der Vorlesungen über specielle und medicinisch-pharmaceutische Botanik. 4 . Aufl. Berlin, pp. iv + 68.
  21. Elenkin, A.A. (1933) O sistematicheskom podrazdenii poryadka Chroococcales Geitler (1925). Trudy Botanicheskogo Instituta Akademii Nauk SSSR, Ser. 2, Sporovye Rasteniya 1: 17–21.
  22. Engler, A. (1898) Syllabus der Pflanzenfamilien. 2. Ausg, Berlin, pp. XII + 214.
  23. Friedmann, I. (1961) Chroococcidiopsis kashaii sp. n. and the genus Chroococcidiopsis (Studies on cave algae from Israel III). Österreichische botanische Zeitschrift 108: 354–367. https://doi.org/10.1007/BF01289743
  24. Gama-Jr., W.A., Laughinghouse IV, H.D. & Sant’Anna, C.L. (2014) How diverse are coccoid cyanobacteria? A case study of terrestrial habitats from the Atlantic Rainforest (São Paulo, Brazil). Phytotaxa 178 (2): 61–97. https://doi.org/10.11646/phytotaxa.178.2.1
  25. Gama, W.A., Rigonato, J., Fiore, M.F. & Sant’Anna, C.L. (2019) New insights into Chroococcus (Cyanobacteria) and two related genera: Cryptococcum gen. nov. and Inacoccus gen. nov. European journal of phycology 54: 315–325. https://doi.org/10.1080/09670262.2018.1563913
  26. Gardner, N.L. (1927) New Myxophyceae from Porto Rico (Vol. 7): Momories of the New York Botanical Garden.
  27. Geitler, L. (1925) Synoptische darstellung der Cyanophyceen in morphologischer und systematischer Hinsicht. Beihefte zum Botanischen Centralblatt 41 (Abt. 2): 163–294.
  28. Geitler, L. (1932) Cyanophyceae. (Vol. 14): Akademische Verlagsgesellschaft m.b.h.
  29. Gomont, M. (1892) Monographie des Oscillariées (Nostocacées homocystées). Annales des Sciences Naturelles, Botanique, Paris, France, 7 15: 263–368.
  30. Guiry, M.D. & Guiry, G.M. (2021) AlgaeBase. In, World-wide electronic publication, National University of Ireland, Galway. Available from: https://www.algaebase.org/ (accessed 1 January 2021)
  31. Hauer, T., Bohunická, M., Johansen, J.R., Mares, J. & Berrendero-Gomez, E. (2014) Reassessment of the cyanobacterial family Microchaetaceae and establishment of new families Tolypothrichaceae and Godleyaceae. Journal of Phycology 50 (6): 1089–1110. https://doi.org/10.1111/jpy.12241
  32. Hauer, T. & Komárek, J. (2020) CyanoDB 2.0—On-line database of cyanobacterial genera.—World-wide electronic publication. In. Univ. of South Bohemia & Inst. of Botany AS CR, Available from: http://www.cyanodb.cz (accessed 1 December 2020)
  33. Hentschke, G.S., Johansen, J.R., Pietrasiak, N., Fiore, M.F., Rigonato, J., Sant’Anna, C.L. & Komárek, J. (2016) Phylogenetic placement of Dapisostemon gen. nov. and Streptostemon, two tropical heterocytous genera (Cyanobacteria). Phytotaxa 245 (2): 129–143. https://doi.org/10.11646/phytotaxa.245.2.4
  34. Hoffmann, L., Komárek, J. & Kaštovský, J. (2005) System of Cyanoprokaryotes (Cyanobacteria)—state in 2004. Algological studies 117: 95–115. https://doi.org/10.1127/1864-1318/2005/0117-0095
  35. IBGE (2018) 1º Workshop sobre representação de biomas compatível com a escala 1:250 000. Relatório técnico. In: IBGE (Org.) Instituto Brasileiro de Geografia e Estatística (IBGE). Rio de Janeiro, 61 pp.
  36. Jacinavicius, F.R., Gama Júnior, W.A., Azevedo, M.T.d.P. & Sant’anna, C.L. (2013) Manual para cultivo de cianobactérias. São Paulo: Secretaria do Meio Ambiente. Available from: https://www.infraestruturameioambiente.sp.gov.br/institutodebotanica/wp-content/uploads/sites/235/2013/09/virtuais_4cianobact%C3%A9rias.pdf (accessed 1 March 2019)
  37. Johansen, J.R., Hentschke, G.S., Pietrasiak, N., Rigonato, J., Fiore, M.F. & Sant’Anna, C.L. (2017) Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii. Fottea 17 (2): 178–190. https://doi.org/10.5507/fot.2017.002
  38. Johansen, J.R., Kováčik, L., Casamatta, D.A., Iková, K.F. & Kaštovský, J. (2011) Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92: 283–302. https://doi.org/10.1127/0029-5035/2011/0092-0283
  39. Kaštovský, J. (2024) Welcome to the jungle!: An overview of modern taxonomy of cyanobacteria. Hydrobiologia 851: 1063–1077. https://doi.org/10.1127/0029-5035/2011/0092-0283
  40. Komárek, J. (1993) Validation of the genera Gloeocapsopsis and Asterocapsa (Cyanoprokaryota) with regard to species from Japan, Mexico and Himalayas. Bulletin of the National Science Museum 19 (1): 19–37.
  41. Komárek, J. & Anagnostidis, K. (1986) Modern approach to the classification system of cyanophytes. II: Chroococcales. Archiv für Hydrobiologie. Supplementband. Monographische Beiträge 73: 157–226.
  42. Komárek, J. & Anagnostidis, K. (1989) Modern approach to the classification system of Cyanophytes 4-Nostocales. Archiv für Hydrobiologie. Supplementband. Monographische Beiträge 82: 247–345.
  43. Komárek, J. (1993) Validation of the genera Gloeocapsopsis and Asterocapsa (Cyanoprocaryota) with regard to species from Japan, Mexico and Himalayas. Bulletin of the National Science Museum Series B 19: 19–37.
  44. Komárek, J. & Anagnostidis, K. (1995) Nomenclatural novelties in chroococcalean cyanoprokaryotes. Preslia 67: 15–23.
  45. Komárek, J. & Anagnostidis, K. (1998) Süßwasserflora von Mitteleuropa, Teil 1 / Part 1: Chroococcales. Springer Spektrum
  46. Komárek, J. (2003) Two Camptylonemopsis species (cyanoprokaryotes) from” Mata Atlântica” in coastal Brazil. Preslia 75 (3): 223–232.
  47. Komárek, J. & Anagnostidis, K. (2005) Süßwasserflora von Mitteleuropa, Bd. 19/2: Cyanoprokaryota. Bd. 2 / Part 2: Oscillatoriales (Vol. 19/2). Springer Spektrum, 759 pp.
  48. Komárek, J. (2006) Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21: 349–375. https://doi.org/10.4490/ALGAE.2006.21.4.349
  49. Komárek, J., Nedbalová, L. & Hauer, T. (2012) Phylogenetic position and taxonomy of three heterocytous cyanobacteria dominating the littoral of deglaciated lakes, James Ross Island, Antarctica. Polar Biology 35: 759–774. https://doi.org/10.1007/s00300-011-1123-x
  50. Komárek, J. (2013) Süßwasserflora von Mitteleuropa, Bd. 19/3: Cyanoprokaryota: 3. Teil/3rd part: Heterocytous Genera. Springer Spektrum, 1130 pp.https://doi.org/10.1007/978-3-8274-2737-3
  51. Komárek, J., Kaštovský, J., Mares, J. & Johansen, J.R. (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) using a polyphasic approach. Preslia 86: 295–335.
  52. Kützing, F.T. (1845) Phycologia germanica, d. i. Deutschlands Algen in bündigen Beschreibungen. Nebst einer Anleitung zum Untersuchen und Bestimmen dieser Gewächse für Anfänger. Nordhausen, Deutschland [1]–340 [‘240’]. https://doi.org/10.5962/bhl.title.13687
  53. Kützing, F.T. (1847) Tabulae phycologicae; oder, Abbildungen der Tange. Nordhausen, Deutschland Vol. I, fasc. 3–5 pp. 17–36, pls 21–50.
  54. Lemes-da-Silva, N.M., Branco, L.H.Z. & Necchi-Júnior, O. (2010) New aerophytic morphospecies of Cyanobacteria from tropical forest fragments in northwestern São Paulo state, Brazil. Acta Botanica Brasilica 24: 916–923. https://doi.org/10.1590/S0102-33062010000400006
  55. Lemes-da-Silva, N.M., Branco, L.H.Z. & Necchi Júnior, O. (2012) Corticolous cyanobacteria from tropical forest remnants in northwestern São Paulo State, Brazil. Brazilian Journal of Botany 35: 169–179. https://doi.org/10.1590/S0100-84042012000200006
  56. Machado-de-Lima, N.M. & Branco, L.H.Z. (2020) Biological soil crusts: new genera and species of Cyanobacteria from Brazilian semi-arid regions. Phytotaxa 470 (4): 263–281. https://doi.org/10.11646/phytotaxa.470.4.1
  57. Machado-de-Lima, N.M., Martins, M.D. & Branco, L.H.Z. (2017) Description of a tropical new species of Wilmottia (Oscillatoriales, Cyanobacteria) and considerations about the monophyly of W. murrayi. Phytotaxa 307 (1): 43–54. https://doi.org/10.11646/phytotaxa.307.1.4
  58. Mai, T., Johansen, J.R., Pietrasiak, N., Bohunická, M. & Martin, M.P. (2018) Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 365 (1): 1–59. https://doi.org/10.11646/phytotaxa.365.1.1
  59. Martins, M.D. & Branco, L.H.Z. (2016) Potamolinea gen. nov. (Oscillatoriales, Cyanobacteria): a phylogenetically and ecologically coherent cyanobacterial genus. International Journal of Systematic and Evolutionary Microbiology 66: 3632–3641. https://doi.org/10.1099/ijsem.0.001243
  60. Martins, M.D., Rigonato, J., Taboga, S.R. & Branco, L.H.Z. (2016) Proposal of Ancylothrix gen. nov., a new genus of Phormidiaceae (Cyanobacteria, Oscillatoriales) based on a polyphasic approach. International Journal of Systematic and Evolutionary Microbiology 66: 2396–2405. https://doi.org/10.1099/ijsem.0.001044
  61. Möebius, M. (1889) Bearbeitung der Van H. Schenk in Brasilien Gesammlten Algen. Hedwigia: 28.
  62. Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853–858. https://doi.org/10.1038/35002501
  63. Nabout, J.C., da Silva Rocha, B., Carneiro, F.M. & Sant’Anna, C.L. (2013) How many species of Cyanobacteria are there? Using a discovery curve to predict the species number. Biodiversity and Conservation 22: 2907–2918. https://doi.org/10.1007/s10531-013-0561-x
  64. Nogueira, N.M.C. & Ferreira-Correia, M.M. (2001) Cyanophyceae/Cyanobacteria in red mangrove forest at mosquitos and coqueiros estuaries, São Luís, state of Maranhão, Brazil. Brazilian Journal of Biology 61: 347–356. https://doi.org/10.1590/S1519-69842001000300002
  65. Rabenhorst, L. (1863) Kryptogamen-Flora von Sachsen, Ober-Lausitz, Thüringen und Nord-Böhmen, mit Berücksichtigung der benachbarten Länder: erste Abtheilung: Algen im weitesten Sinne, Leber und Laubmoose. duardum Kummerum, Leipzig, Deutschland, pp. i–xx, 1–653.
  66. Rabenhorst, L. (1865) Flora europaea algarum aquae dulcis et submarinae. Sectio II. Algas phycochromaceas complectens. Eduardum Kummerum, Leipzig, Deutschland, pp. 1–319. https://doi.org/10.5962/bhl.title.7029
  67. Ramos, G.J.P., Branco, L.H.Z. & Moura, C.W.D.N. (2019) Cyanobacteria from bromeliad phytotelmata: new records, morphological diversity, and ecological aspects from northeastern Brazil. Nova Hedwigia 108: 51–72. https://doi.org/10.1127/nova_hedwigia/2018/0499
  68. Rasouli-Dogaheh, S., Komárek, J., Chatchawan, T. & Hauer, T. (2022) Thainema gen. nov. (Leptolyngbyaceae, Synechococcales): A new genus of simple trichal cyanobacteria isolated from a solar saltern environment in Thailand. PLOS ONE 17: e0261682. https://doi.org/10.1371/journal.pone.0261682
  69. Řeháková, K., Johansen, J.R., Casamatta, D.A., Xuesong, L. & Vincent, J. (2007) Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 46: 481–502. https://doi.org/10.2216/06-92.1
  70. Rigonato, J., Alvarenga, D.O. & Fiore, M.F. (2017) Tropical cyanobacteria and their biotechnological applications. In: De Azevedo, J.L. & Quecine, M.C. (Eds.) Diversity and Benefits of Microorganisms from the Tropics. Springer, pp. 139–167. https://doi.org/10.1007/978-3-319-55804-2
  71. Sant’Anna, C.L., Azevedo, M.T.P., Branco, L.H.Z. & Komárek, J. (2007) New aerophytic morphospecies of Nostoc (cyanobacteria) from São Paulo state, Brazil. Hoehnea 34: 95–101. https://doi.org/10.1590/S2236-89062007000100007
  72. Sant’Anna, C.L., Azevedo, M.T.P., Fiore, M.F., Lorenzi, A.S., Kaštovský, J. & Komárek, J. (2011) Subgeneric diversity of Brasilonema (Cyanobacteria, Scytonemataceae). Brazilian Journal of Botany 34: 51–62. https://doi.org/10.1590/S0100-84042011000100006
  73. Sant’Anna, C.L., Azevedo, M.T.P., Kaštovský, J. & Komárek, J. (2010) Two form-genera of aerophytic heterocytous cyanobacteria from Brazilian rainy forest “Mata Atlântica”. Fottea 10: 217–228. https://doi.org/10.5507/fot.2010.012
  74. Sant’Anna, C.L., Bicudo, R.M.T. & Pereira, H.A.S.L. (1983) Nostocophyceae (Cyanophyceae) do Parque estadual da Ilha do Cardoso, estado de São Paulo, Brasil. Rickia 10: 1–27.
  75. Sant’anna, C.L., Kaštovský, J., Hentschke, G.S. & Komárek, J. (2013) Phenotypic studies on terrestrial stigonematacean cyanobacteria from the Atlantic rainforest, São Paulo State, Brazil. Phytotaxa 89: 1–23. https://doi.org/10.11646/phytotaxa.89.1.1
  76. Schaffner, J.H. (1922) The classification of plants XII. Ohio Journal of Science 22: 129–139.
  77. SOS Mata Atlântica (2016) INPE Atlas dos remanescentes florestais da Mata Atlântica 2014–2015. Fundação SOS Mata Atlântica, Instituto Nacional de Pesquisas Espaciais, São Paulo.
  78. SOS Mata Atlântica & INPE (2014) Atlas dos remanescentes florestais da mata atlântica período 2012–2013: Relatório técnico. ArcPlan, São Paulo.
  79. SOS Mata Atlântica & INPE (2019) Atlas dos remanescentes florestais da Mata Atlântica: relatório técnico: período 2017–2018. Fundação SOS Mata Atlântica, São Paulo.
  80. Strunecky, O., Komarek, J., Johansen, J., Lukesova, A. & Elster, J. (2013) Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria). Jounal of Phycology 49: 1167–1180. https://doi.org/10.1111/jpy.12128
  81. Gomont, M. (1901) Myxophyceae hormogoneae. In: West, W., West, G.S., Reinbold, T., Gomont, M. & Schmidt, J. (Eds.) Flora of Koh Chang: Contributions to the knowledge of the vegetation in the Gulf of Siam—Part IV: Fresh water Chlorophyceae—Marine algae (Chlorophyceae, Phaeophyceae, Dictyotales, Rhodophyceae)—Myxophyceae Hormogoneae—Peridiniales. Botanisk Tidsskrift, Paris, France, pp. 157–221.
  82. Wille, N. (1913) Neue Süßwasseralgen von Samoa-Inseln. Hedwigia 53: 144–147.
  83. Walter, J.M., Coutinho, F.H., Dutilh, B.E., Swings, J., Thompson, F.L. & Thompson, C.C. (2017) Ecogenomics and Taxonomy of Cyanobacteria Phylum. Frontiers in Microbiology 8. https://doi.org/10.3389/fmicb.2017.02132