Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-04-16
Page range: 220-228
Abstract views: 1
PDF downloaded: 0

A molecular phylogeny of Garuleum (Calenduleae, Asteraceae) in southern Africa

Department of Plant Sciences, University of the Free State, PO Box 339, Bloemfontein 9300
Department of Plant Sciences, University of the Free State, PO Box 339, Bloemfontein 9300
Department of Plant Sciences, University of the Free State, PO Box 339, Bloemfontein 9300
Department of Plant Sciences, University of the Free State, PO Box 339, Bloemfontein 9300
Garuleum Calenduleae South Africa heterocarpus molecular phylogeny Eudicots

Abstract

We present the first complete molecular phylogeny for the genus Garuleum (Calenduleae, Asteraceae), which is endemic to South Africa and Namibia. To investigate the phylogenetic relationships, sequence data from plastid trnL-trnF and nuclear ITS were analysed with Parsimony and Bayesian Inference approaches. The genus is resolved as monophyletic and G. bipinnatum is shown as the first species to diverge from the group. Four well to moderately supported subclades were identified where the species distribution ranges within a subclade were distinct. The wide distribution of G. bipinnatum was ascribed to its heterocarpic fruit, and the distribution of the genus was possibly influenced by water availability and elevation. These results confirmed the previous molecular work in which some Garuleum species were included.

References

  1. Afonso, A., Castro, S., Loureiro, J., Mota, J., de Oliveira, J.C. & Torices, R. (2014) The effects of achene type and germination time on plant performance in the heterocarpic Anacyclus clavatus (Asteraceae). American Journal of Botany 101 (5): 892–898. https://doi.org/10.3732/ajb.1400030
  2. Akaike, H. (1973) Second International Symposium on Information Theory. In: Petrov, B.N. & Csaki, B.F. (Eds.) Information theory and an extension of the maximum likelihood principle. Academiai Kiado, Budapest, pp. 267–281.
  3. Anderberg, A.A., Baldwin, B.G., Bayer, R.G., Breitwieser, J., Jeffrey, C., Dijon, M.O., Eldenas, P., Funk, V., Garcia-Jacas, N., Hind, D.J.N., Karis, P.O., Lack, H.W., Nesom, G., Nordenstam, B., Oberpreiler, C., Panero, J.L., Puttock, C., Robinson, H., Stuessy, T.F., Susanna, A., Urtubey, E., Vogt, R., Ward, J. & Watson, L.E. (2007) Compositae. In: Kadereit, J.W. & Jeffrey, C. (Eds.) The families and genera of vascular plants, vol. 8. Springer, Berlin, pp. 61–568. https://doi.org/10.1007/978-3-540-31051-8_7
  4. Barry, R.G. (2008) Mountain Weather and Climate. Cambridge University Press, 506 pp. https://doi.org/10.1017/CBO9780511754753
  5. Blattner, F. (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. BioTechniques 27: 1180–1186. https://doi.org/10.2144/99276st04
  6. Bremer, K. (1994) Asteraceae: Cladistics & Classification. Timber Press., Portland, Oregon, 752 pp.
  7. Carbutt, C. & Edwards, T. (2006) The endemic and near-endemic angiosperms of the Drakensberg Alpine Centre. South African Journal of Botany 72: 105–132. https://doi.org/10.1016/j.sajb.2005.06.001
  8. Cassini, H. (1819) Description des nouveaux genres Garuleum et Phagnalon. Bulletin des Sciences la Société Philomatique 1819: 172−174.
  9. Clark, V.R., Barker, N.P. & Mucina, L. (2009) The Sneeuberg: A new centre of floristic endemism on the Great Escarpment, South Africa. South African Journal of Botany 75: 196–238. https://doi.org/10.1016/j.sajb.2008.10.010
  10. Cousan, R., Dytham, C. & Law, R. (2008) Dispersal in Plants: A population perspective. Oxford University Press, New York, 221 pp. https://doi.org/10.1093/acprof:oso/9780199299126.001.0001
  11. Darriba, D., Taboada, G., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. https://doi.org/10.1038/nmeth.2109
  12. Doyle, J. & Doyle, J. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 1: 11–15.
  13. Funk, V.A., Bayer, R.J., Keeley, S., Chan, R., Watson, L., Gemeinholzer, B., Schilling, E., Panero, J.L., Baldwin, B.G., Garcia-Jacas, N., Susanna, A. & Jansen, R.K. (2005) Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biologiske Skrifter 55: 343–374.
  14. Funk, V.A., Susanna, A., Stuessy, T.F. & Robinson, H. (2009) Classification of the Compositae. In: Funk, V.A., Susanna, A., Stuessy, T.F. & Bayer, R.J. (Eds.) Systematic, evolution and biogeography of Compositae. International Association for Plant Taxonomy, Vienna, pp. 171–189.
  15. Goldblatt, P. & Manning, J. (2000) Cape plants. A conspectus of the Cape flora of South Africa. Strelitzia 9. National Botanical Institute of South Africa, Cape Town.
  16. Harper, J.L. (1977) Population Biology of Plants. New York, NY, Academic Press, 892 pp.
  17. Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
  18. Huelsenbeck, J.P. & Ronquist, F. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  19. Imbert, E. (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology Evolution and Systematics 5: 13–36. https://doi.org/10.1078/1433-8319-00021
  20. Lenoir, J., Gegout, J., Guisan, A., Vittoz, P., Wohlgemuth, T., Zimmermann, N.E., Dullinger, S., Pauli, H., Willner, W. & Svenning, J. (2010) Going against the flow: potential mechanisms for unexpected downslope range shifts in a warmer climate. Ecography 33: 295–303. https://doi.org/10.1111/j.1600-0587.2010.06279.x
  21. Manchester, S.R. & O’Leary, E.L. (2010) Phylogenetic distribution and identification of fin-winged fruits. The Botanical Review 76: 1–82. https://doi.org/10.1007/s12229-010-9041-0
  22. Nordenstam, B. (1994) Tribe Calenduleae. In: Bremer, K. (Eds.) Asteraceae: Cladistics & Classification. Timber Press, Portland, pp. 365–375.
  23. Nordenstam, B. (2006) Generic revisions in the tribe Calenduleae (Compositae). Compositae Newsletter 44: 38–49.
  24. Nordenstam, B., Källersjö, M. & Eldenäs, P. (2006) Nephrotheca, a new monotypic genus of the Compositae-Calenduleae from the southwestern Cape Province. Compositae Newsletter 44: 32–37.
  25. Nordenstam, B. (2007) Tribe Calenduleae Cass. (1819). In: Kadereit, J.W. & Jeffrey, C. (Eds.) The families and genera of vascular plants, vol. 8. Springer, Berlin, pp. 241–245.
  26. Nordenstam, B. & Källersjö, M. (2009) Calenduleae. In: Funk, V.A., Susanna, A., Stuessy, T.F. & Bayer, R.J. (Eds.) Systematics, evolution and biogeography of Compositae. International Association for Plant Taxonomy, Vienna, pp. 527–537.
  27. Norlindh, T. (1943) Studies in the Calenduleae I. Monograph of the Genera Dimorphotheca, Castalis, Osteospermum, Gibbaria and Chrysanthemoides. C.W.K. Gleerup, Lund, Sweden.
  28. Norlindh, T. (1960) Additions to the monograph on Osteospermum. Botaniska Notiser 113 (4): 385–399.
  29. Norlindh, T. (1977a) Calenduleae–systematic review. In: Heywood, V., Harbone, J. & Turner, B. (Eds.) The Biology and Chemistry of the Compositae, vol. 1. Academic Press, New York, pp. 961–987.
  30. Norlindh, T. (1977b) Garuleum subgenus Rutidocarpaea, a monotypic subgenus with achene dimorphism. Botaniska Notiser 130: 377–380.
  31. Orrock, J.L. & Christopher, C.C. (2010) Density of intraspecific competitors determines the occurrence and benefits of accelerated germination. American Journal of Botany 97: 694–699. https://doi.org/10.3732/ajb.0900051
  32. Platts, P.J., Gereau, R.E., Burger, N.D. & Marchant, R. (2013) Spatial heterogeneity of climate change in an Afromontane centre of endemism. Ecography 36: 518–530. https://doi.org/10.1111/j.1600-0587.2012.07805.x
  33. Pooley, E.S. (2003) Mountain Flowers: a field guide to the flora of the Drakensberg and Lesotho. Flora Publications Trust, c/o Natal Herbarium, Durban, 320 pp.
  34. Praglowski, J. & Grafstöm, E. (1980) The pollen morphology of the tribe Calenduleae with reference to taxonomy. Botanical Notiser 133: 177–188.
  35. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  36. Sadler, R., Parker, T., Verboom, G.A., Ellis, A.G., Jackson, M., van Zyl, J., Manning, J. & Bergh, N.G. (2022) A molecular phylogeny of Calenduleae (Asteraceae) supports the transfer of Dimorphotheca polyptera DC. to Osteospermum L. South African Journal of Botany 151: 234–245. https://doi.org/10.1016/j.sajb.2022.09.001
  37. Stern, K.R., Bidlack, J.E. & Jansky, S.H. (2007) Introductory Plant Biology, ed. 9. McGraw-Hill, New York, 616 pp.
  38. Swelankomo, N. (2010) Garuleum bipnnatum (Thunb.) Less. [http://www.plantzafrica.com/plantefg/garulbip.htm]
  39. Swelankomo, N. (2013) FSA contribution 22: Asteraceae: Calenduleae: Garuleum. Bothalia 43 (2): 167–178. https://doi.org/10.4102/abc.v43i2.93
  40. Swofford, D.S. (2003) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.
  41. Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109. https://doi.org/10.1007/BF00037152
  42. Torices, R., Agudo, A. & Álvarez, I. (2013) Not only size matters: achene morphology affects time of seedling emergence in three heterocarpic species of Anacyclus (Anthemideae, Asteraceae). Anales del Jardín Botánico de Madrid 70 (1): 48–55. https://doi.org/10.3989/ajbm.2351
  43. Van der Pijl, L. (1982) Principles of Dispersal in Higher Plant. Springer-Verlag, New York, 218 pp. https://doi.org/10.1007/978-3-642-87925-8
  44. Van Zyl, J. (2013) The systematics of the genus Garuleum Cass. (Asteraceae). MSc dissertation, University of the Free State, 231 pp.
  45. Watson, L.E., Siniscalchi, C.M. & Mandel, J. (2020) Phylogenomics of the hyperdiverse daisy tribes: Anthemideae, Astereae, Calenduleae, Gnaphalieae and Senecioneae. Journal of Systematics and Evolution 58 (6): 841–852. https://doi.org/10.1111/jse.12698
  46. Yang, Z. (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 19: 1396–1401.
  47. Zhang, K., Yao, L., Zhang, Y. & Tao, J. (2019) Achene heteromorphism in Bidens pilosa (Asteraceae) differences in germination and possible adaptive significance. Annals of Botany 11 (3): 1–8. https://doi.org/10.1093/aobpla/plz026