Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-04-03
Page range: 255-264
Abstract views: 3
PDF downloaded: 0

Morphological studies on leaf epidermis in six species of Nekemias Raf. (Vitaceae) from China

Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
Eudicots anticlinal walls environmental adaptation interspecific difference diversity

Abstract

Nekemias Raf. (Vitaceae) is a re-defined genus isolated from the traditional Ampelopsis in the grape family of Vitaceae, including eight species mainly distributed in eastern Asia, and one in North America. In this study, the leaf epidermis of 28 samples representing six species of Nekemias and one species from the related genus of Ampelopsis are investigated using light microscopy. The results show that the shapes of leaf epidermal cells are polygonal or irregular. The variations of anticlinal walls are found commonly among species of Nekemia, especially within N. cantoniensis and N. grossedentata, which is probably associated with their habitats. Irregular stomata are found on the abaxial surface. The epidermal hair styles are multicellular, single-row on both sides and common in N. cantoniensis, N. grossedentata, and N. rubifolia, not in N. chaffanjonii and N. hypoglauca. Our results highlight that the variation of leaf epidermis in Nekemias are possibly related to the environment and habitats.

References

  1. Al-Edhari, A.H., Sardar, A.S. & Regawi, S.M.A. (2017) A comparative anatomical study for the species of the genus Carex L. (Cyperaceae) in Iraq. Journal of Scientific and Engineering Research 4 (10): 374–379.
  2. Baker, J.G. (1883) Contributions to the Flora of Madagascar.—Part I. Polypetalæ. Journal of the Linnean Society of London, Botany 20 (126): 87–158. https://doi.org/10.1111/j.1095-8339.1883.tb00195.x
  3. Baranova, M. (1992) Principles of comparative stomatographic studies of flowering plants. Botanical Review 58 (1): 49–99. https://doi.org/10.1007/BF02858543
  4. Chen, G., Sun, W.B. & Sun, H. (2009) Morphological characteristics of leaf epidermis and size variation of leaf, flower and fruit in different ploidy levels in Buddleja macrostachya (Buddlejaceae). Journal of Systematics and Evolution 47 (3): 231–236. https://doi.org/10.1111/j.1759-6831.2009.00026.x
  5. Chen, I. & Manchester, S.R. (2011) Seed morphology of Vitaceae. International Journal of Plant Sciences 172 (1): 1–35. https://doi.org/10.1086/657283
  6. Chen, Z.D., Ren, H. & Wen, J. (2007) Vitaceae. In: Wu, Z.-Y., Hong, D.-Y. & Raven, P.H. (Eds.) Flora of China. Beijing and St. Louis, Mo.: Science Press and Missouri Botanical Garden Press, pp. 173–222.
  7. Chernetskyy, M. & Weryszko-Chmielewska, E. (2008) Structure of Kalanchoë pumila Bak. leaves (Crassulaceae DC.). Acta Agrobotanica 61: 11–24. https://doi.org/10.5586/aa.2008.029
  8. Chu, Z.F. (2019) Genome size evolution of Vitaceae and phylogenetic relationships of Nekemias. Jishou University. [https://kns.cnki.net/]
  9. Falcão, H.M., Medeiros, C.D., Silva, B.L.R., Sampaio, E.V.S.B., Almeida-Cortez, J.S. & Santos, M.G. (2015) Phenotypic plasticity and ecophysiological strategies in a tropical dry forest chronosequence: A study case with Poincianella pyramidalis. Forest Ecology and Management 340: 62–69. https://doi.org/10.1016/j.foreco.2014.12.029
  10. Fontenelle, G.B., Costa, C.G. & Machado, R.D. (2008) Foliar anatomy and micromorphology of eleven species of Eugenia L. (Myrtaceae). Botanical Journal of the Linnean Society 116 (2): 111–133. https://doi.org/10.1111/j.1095-8339.1994.tb00426.x
  11. Fryns-Claessens, E. & Cotthem, W.R.J.V. (1973) A new classification of ontogenetic types of stomata. Botanical Review 39 (1): 71–138. https://doi.org/10.1007/BF02860071
  12. Galet, P. (1967) Recherches sur les methods d’identification et de classification des Vitacées temperées. II Thèse, présentée a la Faculté des Sciences. Université de Montpellier.
  13. Ishida, T., Kurata, T., Okada, K. & Wada, T. (2008) A genetic regulatory network in the development of trichomes and root hairs. Annual Review of Plant Biology 59 (1): 365–386. https://doi.org/10.1146/annurev.arplant.59.032607.092949
  14. Johnson, H.B. (1975) Plant pubescence: An ecological perspective. The Botanical Review 41 (3): 233–258. https://doi.org/10.1007/BF02860838
  15. Kaya, A. & Koca, F. (2003) Comparative leaf anatomical studies of Acinos species (Labiatae) from Wkey 23 (5): 577–588. https://doi.org/10.1111/j.1756-1051.2003.tb00437.x
  16. Klich, M.G. (2000) Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity. Environmental and Experimental Botany 44 (3): 171–183. https://doi.org/10.1016/S0098-8472(00)00056-3
  17. Liao, J.P., Zou, P. & Zhang, D.X. (2008) Leaf epidermal micromorphology of Cercis (Fabaceae: Caesalpinioideae). Botanical Journal of the Linnean Society 158 (3): 539–547. https://doi.org/10.1111/j.1095-8339.2008.00877.x
  18. Linnaeus (1753) Species plantarum. In (Vol. 1–2). Stockholm, Sweden. 616 pp.
  19. Lu, L.M., Wen, J. & Chen, Z.D. (2012) A combined morphological and molecular phylogenetic analysis of Parthenocissus (Vitaceae) and taxonomic implications. Botanical Journal of the Linnean Society 168 (1): 43–63. https://doi.org/10.1111/j.1095-8339.2011.01186.x
  20. Meng, Y., Wang, J.J. & Nie, Z.L. (2016) Comparative morphology of leaf epidermis in 34 species of Maianthemum (Asparagaceae, Polygonateae) and their systematic significance. Phytotaxa 275 (2): 81–96. https://doi.org/10.11646/phytotaxa.275.2.1
  21. Metcalfe, C.R. & Chalk, L. (1988) Anatomy of the dicotyledons: Systematic anatomy of leaf and stem, with a brief history of the subject (2nd ed. Vol. 1). Clarendon Press, Oxford.
  22. Michaux, A. (1803) Flora boreali-americana, sistens caracteres plantarum quas in America septentrionali collegit et detexit Andreas Michaux (Vol. v.1). Parisiis et Argentorati: apud fratres Levrault, 159 pp. https://doi.org/10.5962/bhl.title.330
  23. Neto, I.L.D.C., Martins, F.M., Martins, M.L.L. & Silva, L.R.D.O. (2017) Comparative leaf anatomy of wild Manihot Mill. species (Euphorbiaceae) from Chapada Diamantina, Bahia, Brazil. Nordic Journal of Botany 35 (2): 207–219. https://doi.org/10.1111/njb.01324
  24. Nie, Z.L., Sun, H., Manchester, S.R., Meng, Y., Luke, Q. & Wen, J. (2012) Evolution of the intercontinental disjunctions in six continents in the Ampelopsis clade of the grape family (Vitaceae). BMC Evolutionary Biology 12: 17. https://doi.org/10.1186/1471-2148-12-17
  25. Nitta, I. & Ohsawa, M. (1997) Leaf dynamics and shoot phenology of eleven warm-temperate evergreen broad-leaved trees near their northern limit in central Japan. Plant Ecology 130 (1): 71–88. https://doi.org/10.1023/A:1009735709258
  26. Nurul-Aini, C.C., Noraini, T., Latiff, A., Amirul-Aiman, A.J., Ruzi, A.R. & Idris, S. (2014) Taxonomic significance of leaf micromorphology in some selected taxa of Acanthaceae (Peninsular Malaysia). AIP Conference Proceedings 1614 (1): 727–733. https://doi.org/10.1063/1.4895291
  27. Rafinesque, C.S. (1838) Sylva telluriana. mantis. synopt. new genera and species of trees and shrubs of North America, and other regions of the earth, omitted or mistaken by the botanical authors and compilers, or not properly classified, now reduced by their natural affinities to the proper natural orders and tribes. Printed for the author and publisher, Philadelphia, pp. 86–89. https://doi.org/10.5962/bhl.title.22070
  28. Ren, H., Lu, L.M., Soejima, A., Luke, Q., Zhang, D.X., Chen, Z.D. & Wen, J. (2011) Phylogenetic analysis of the grape family (Vitaceae) based on the noncoding plastid trnC-petN, trnH-psbA, and trnL-F sequences. Taxon 60: 629–637. https://doi.org/10.1002/tax.603001
  29. Ren, H., Pan, K.Y., Chen, Z.D. & Wang, R.Q. (2003) Structural characters of leaf epidermis and their systematic significance in Vitaceae. Journal Systematic and Evolution 41 (6): 531–544.
  30. Serna, L. & Martin, C. (2006) Trichomes: different regulatory networks lead to convergent structures. Trends in Plant Science 11 (6): 274–280. https://doi.org/10.1016/j.tplants.2006.04.008
  31. Société Botanique De, F. & Centre National De La Recherche, S. (1886) Bulletin de la Société botanique de France 33: 460.
  32. Soejima, A. & Wen, J. (2006) Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. American Journal of Botany 93 (2): 278–287. https://doi.org/10.3732/ajb.93.2.278
  33. Stace, C.A. (1965) Cuticular studies as an aid to plant taxonomy. Bulletin of the British Museum (Natural History): Botany, pp. 3–78.
  34. Stace, C.A. (1984) The Taxonomic Importance of the Leaf Surface. In: Heywood, V. H. & Moore, D.M. (Eds.) Current Concepts in Plant Taxonomy. Academy Press, London, pp. 67–94.
  35. Trias-Blasi, A., Parnell, J.A.N. & Trevor, R.H. (2012) Multi-gene region phylogenetic analysis of the grape family (Vitaceae). Systematic Botany 37 (4): 941–950. https://doi.org/10.1600/036364412X656437
  36. Ullah, F., Zafar, M., Ahmad, M., Shah, S.N., Razzaq, A., Sohail, A., Zaman, W., Çelik, A., Ayaz, A. & Sultana, S. (2018) A systematic approach to the investigation of foliar epidermal anatomy of subfamily Caryophylloideae (Caryophyllaceae). Flora: 246–247, 61–70. https://doi.org/10.1016/j.flora.2018.07.006
  37. Wen, J. (1999) Evolution of eastern Asian and eastern North American disjunct distributions of flowering plants. Annual Review of Ecology & Systematics 30 (1): 421–455. https://doi.org/10.1146/annurev.ecolsys.30.1.421
  38. Wen, J. (2007) Vitaceae. In: Kubitzki, K. (Ed.) Flowering Plants Eudicots: Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales, Myrtales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 467–479. https://doi.org/10.1007/978-3-540-32219-1_54
  39. Wen, J., Boggan, J. & Nie, Z.L. (2014) Synopsis of Nekemias Raf., a segregate genus from Ampelopsis Michx. (Vitaceae) disjunct between eastern/southeastern Asia and eastern North America, with ten new combinations. PhytoKeys 42: 11–19. https://doi.org/10.3897/phytokeys.42.7704
  40. Wen, J., Lu, L.M., Nie, Z.L., Liu, X.Q., Zhang, N., Ickert Bond, S., Gerrath, J., Manchester, S.R., Boggan, J. & Chen, Z.D. (2018) A new phylogenetic tribal classification of the grape family (Vitaceae). Journal of Systematics and Evolution 56 (4): 262–272. https://doi.org/10.1111/jse.12427
  41. Wen, J., Nie, Z.L., Soejima, A. & Meng, Y. (2007) Phylogeny of Vitaceae based on the nuclear GAI1 gene sequences’. Canadian Journal of Botany-Revue Canadienne De Botanique 85 (8): 731–745. https://doi.org/10.1139/B07-119
  42. Wen, J., Xiong, Z.Q., Nie, Z.L., Mao, L.K., Zhu, Y.B., Kan, X.Z., Ickert-Bond, S.M., Gerrath, J., Zimmer, E.A. & Fang, X.D. (2013) Transcriptome sequences resolve deep relationships of the grape family. PLoS ONE 8 (9): e74394. https://doi.org/10.1371/journal.pone.0074394
  43. Wiggers, F.H. (1780) Primitiae Florae Holsaticae Litteris Mich. Frider, Bartschii Acad. Typogr., Kiel, pp. 1–112.
  44. Wilkinson, H.P. (1979) The plant surface (mainly leaf). In: Metcalfe, C.R. & Chalk, L. (Eds.) Anatomy of the dicotyledons. Oxford: Clarendon Press, pp. 97–165.
  45. Xia, Y. (2016) Study of medicinal plants of Ampelopsis by DNA molecular identification and chemical composition analysis. Hubei University of Chinese Medicine, Wuhan.
  46. Yan, A., Pan, J., An, L., Gan, Y. & Feng, H. (2012) The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. Journal of Photochemistry and Photobiology B: Biology 113: 29–35. https://doi.org/10.1016/j.jphotobiol.2012.04.011
  47. Zhang, N., Wen, J. & Zimmer, E.A. (2015) Congruent deep relationships in the grape family (Vitaceae) based on sequences of chloroplast genomes and mitochondrial genes via genome skimming. PLoS ONE 10 (12): e0144701. https://doi.org/10.1371/journal.pone.0144701