Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-02-22
Page range: 211-241
Abstract views: 40
PDF downloaded: 3

Phyllosticta taxa (Botryosphaeriales, Phyllostictaceae) from northern Thailand and southern European Russia: New host and geographical records

School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand. Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand.
School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand. Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand.
Manaaki Whenua-Landcare Research, Private Mail Bag 92170, Auckland, New Zealand.
Department of Plant Protection, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Yana Fabritsiusa Street 2/28, Sochi 354002, Krasnodar Region, Russia.
Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China.
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand. Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand. Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, PR China.
1 new taxon Dothideomycetes host reports morphology multi-locus phylogenetic analyses taxonomy Fungi

Abstract

Phyllosticta is a cosmopolitan group of fungi found on various host plants, occurring as pathogens, endophytes and saprobes. Diseases caused by Phyllosticta commonly include leaf and fruit spots that can affect economically important plants. The genus is characterized mainly by aseptate and hyaline conidia and ascospores. Its conidia are surrounded by a mucilaginous sheath, with a single mucoid apical appendage while ascospores exhibit a mucoid cap at both ends. Given that many Phyllosticta taxa are cryptic and share similar morphologies, it is arduous to depict taxonomically relevant characters solely on the basis of morphological or ecological features. Coupled with morphological description, multi-locus phylogenetic analyses of species comprising complexes are used to broadly describe this genus and understand species boundaries. Despite several published taxonomic revisions and enumerations of Phyllosticta species, there is still considerable confusion when identifying these taxa. Herein, we establish three new host records for P. capitalensis, and one new geographical record for P. musaechinensis in Thailand, and one new host and geographical record for P. citribrasiliensis in Russia. We provide an updated phylogenetic tree based on several gene markers: ITS, LSU, ACT, GAPDH, RPB2, and TEF-1α. This includes all Phyllosticta species for which sequence data is available. Six individual Phyllosticta species complexes are accepted. In addition, we synonymize P. ericarum with P. citribrasiliensis.

References

  1. Anderson, J.M., O’Dwyer, C., Phanthavong, S., Sengsoulichan, K., Drenth, A., Vilavong, S. & Burgess, L.W. (2021) First report of Phyllosticta spp. associated with banana freckle disease in southern Lao PDR. Australasian Plant Disease Notes 16: 1–4. https://doi.org/10.1007/s13314-021-00442-y
  2. Asiandu, A.P., Wahyudi, A., Ramadhan, F. & Widjajanti, H. (2021) Bioprospecting of non-mycorrhizal endophytic fungi associated with ferns and mosses. Current Research in Environmental & Applied Mycology 11: 416–437. https://doi.org/10.5943/cream/11/1/30
  3. Baayen, R.P., Bonants, P.J.M., Verkley, G., Carroll, G.C., van der Aa, H.A., De Weerdt, M., Van Brouwershaven, I.R., Schutte, G.C., Maccheroni Jr, W., de Blanco, C.G. & Azevedo, J.L. (2002) Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 92: 464–477. https://doi.org/10.1094/phyto.2002.92.5.464
  4. Baldassari, R.B., Wickert, E. & De Goes, A. (2008) Pathogenicity, colony morphology and diversity of isolates of Guignardia citricarpa and G. mangiferae isolated from Citrus spp. European Journal of Plant Pathology 120: 103–110. https://doi.org/10.1007/s10658-007-9182-0
  5. Baldrian, P., Větrovský, T., Lepinay, C. & Kohout, P. (2022) High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Diversity 114: 539–547. https://doi.org/10.1007/s13225-021-00472-y
  6. Bhunjun, C.S., Niskanen, T., Suwannarach, N., Wannathes, N., Chen, Y.J., McKenzie, E.H., Maharachchikumbura, S.S.N., Buyck, B., Zhao, C.L., Fan, Y.G. & Zhang, J.Y. (2022) The numbers of fungi: are the most speciose genera truly diverse? Fungal Diversity 1–76. https://doi.org/10.1007/s13225-022-00501-4
  7. Bruen, T.C., Philippe, H. & Bryant, D. (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172: 2665–2681. https://doi.org/10.1534/genetics.105.048975
  8. Cai, L., Udayanga, D., Manamgoda, D.S., Maharachchikumbura, S.S.N., McKenzie, E.H.C., Guo, L.D., Liu, X.Z., Bahkali, A. & Hyde, K.D. (2011) The need to carry out re-inventory of plant pathogenic fungi. Tropical Plant Pathology 36: 205–213. https://doi.org/10.1590/s1982-56762011000400001
  9. Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  10. Carbone, I. & Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556. https://doi.org/10.1080/00275514.1999.12061051
  11. Chaiwan, N., Gomdola, D., Wang, S., Monkai, J., Tibpromma, S., Doilom, M., Wanasinghe, D.N., Mortimer, P.E., Lumyong, S. & Hyde, K.D. (2021) https://gmsmicrofungi.org: an online database providing updated information of microfungi in the Greater Mekong Subregion (2021). Mycosphere 12: 1513–1526. https://doi.org/10.5943/mycosphere/12/1/19
  12. Chethana, K.W.T., Jayawardena, R.S., Chen, Y.J., Konta, S., Tibpromma, S., Phukhamsakda, C., Abeywickrama, P.D., Samarakoon, M.C., Senwanna, C., Mapook, A., Tang, X., Gomdola, D., Marasinghe, D.S., Padaruth, O.D., Balasuriya, A., Xu, J., Lumyong, S. & Hyde, K.D. (2021a) Appressorial interactions with host and their evolution. Fungal Diversity 110: 75–107. https://doi.org/10.1007/s13225-021-00487-5
  13. Chethana, K.W.T., Jayawardena, R.S., Chen, Y.J., Konta, S., Tibpromma, S., Abeywickrama, P.D., Gomdola, D., Balasuriya, A., Xu, J., Lumyong, S. & Hyde, K.D. (2021b) Diversity and function of appressoria. Pathogens 10: 746. https://doi.org/10.3390/pathogens10060746
  14. Chethana, K.W.T., Niranjan, M., Dong, W., Samarakoon, M.C., Bao, D.F., Calabon, M.S., Chaiwan, N., Chuankid, B., Dayarathne, M.C., de Silva, N.I., Devadatha, B., Dissanayake, A.J., Goonasekara, I.D., Huanraluek, N., Jayawardena, R.S., Karunarathna, A., Luo, Z.L., Marasinghe, D.S., Ma, X.Y., Norphanphoun, C., Pem, D., Perera, R.H., Rathnayaka, A.R., Raspé, O., Samarakoon, B.C., Senwanna, C., Sun, Y.R., Tang, X., Thiyagaraja, V., Tennakoon, D.S., Zeng, M., Zeng, X., Zhang, J.Y., Zhang, S.N., Bulgakov, T.S., Camporesi, E., Sarma, V.V., Wang, Y., Bhat, D.J. & Hyde, K.D. (2021c) AJOM new records and collections of fungi: 101–150. Asian Journal of Mycology 4: 113–260. https://doi.org/10.5943/ajom/4/1/8
  15. Crous, P.W., Slippers, B., Wingfield, M.J., Rheeder, J., Marasas, W.F., Philips, A.J., Alves, A., Burgess, T., Barber, P., Groenewald, J.Z. & Johannes, Z. (2006) Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology 55: 235–253. https://doi.org/10.3114/sim.55.1.235
  16. Crous, P.W., Summerell, B.A., Shivas, R.G., Burgess, T.I., Decock, C.A., Dreyer, L.L., Granke, L.L., Guest, D.I., Hardy, G.S., Hausbeck, M.K., Hüberli, D., Jung, T., Koukol, O., Lennox, C.L., Liew, E.C.Y., Lombard, L., McTaggart, A.R., Pryke, J.S., Roets, F., Saude, C., Shuttleworth, L.A., Stukely, M.J.C., Vánky, K., Webster, B.J., Windstam, S.T. & Groenewald, J.Z. (2012) Fungal Planet description sheets: 107–127. Persoonia 28: 138–182. https://doi.org/10.3767/003158512x652633
  17. De Silva, D.D., Crous, P.W., Ades, P.K., Hyde, K.D. & Taylor, P.W. (2017) Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biology Reviews 31: 155–168. https://doi.org/10.1016/j.fbr.2017.05.001
  18. Dewdney, M.M., Schubert, T.S., Estes, M.R. & Peres, N.A. (2011) Florida citrus pest management guide: citrus black Spot. EDIS 2011.
  19. Donk, M.A. (1968) Report of the committee for fungi and lichens 1964–1969. Taxon 17: 578–581. https://doi.org/10.2307/1216075
  20. EPPO (2023) EPPO A1 List of pests recommended for regulation as quarantine pests, version 2023-09. Available from: https://www.eppo.int/ACTIVITIES/plant_quarantine/A1_list (accessed: 22 October 2023).
  21. Farr, D.F. & Rossman, A.Y. (2023) US National Fungus Collections and Fungal Databases. Mycology and Nematology Genetic Diversity and Biology Laboratory: Beltsville, MD, USA. Available from: https://nt.ars-grin.gov/fungaldatabases/fungushost/ (accessed: 22 October 2023).
  22. Fries, E.M. (1849) Summa vegetabilium Scandinaviae. Bonnier.
  23. Glienke-Blanco, C., Aguilar-Vildoso, C.I., Vieira, M.L.C., Barroso, P.A.V. & Azevedo, J.L. (2002) Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants. Genetics and Molecular Biology 25: 251–255. https://doi.org/10.1590/s1415-47572002000200021
  24. Glienke, C., Pereira, O.L., Stringari, D., Fabris, J., Kava-Cordeiro, V., Galli-Terasawa, L., Cunnington, J., Shivas, R.G., Groenewald, J.Z. & Crous, P. (2011) Endophytic and pathogenic Phyllosticta species, with reference to those associated with citrus black spot. Persoonia 26: 47–56. https://doi.org/10.3767/003158511x569169
  25. Gomdola, D., Bhunjun, C.S., Hyde, K.D., Jeewon, R., Pem, D. & Jayawardena, R.S. (2022) Ten important forest fungal pathogens: a review on their emergence and biology. Mycosphere 13: 612–671. https://doi.org/10.5943/mycosphere/13/1/6
  26. Hawksworth, D.L. & David, J.C. (1989) Family names. C.A.B. International Mycological Institute, Kew, United Kingdom. 76 pp.
  27. Hawksworth, D.L. (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological Research 95: 641–655. https://doi.org/10.1016/s0953-7562(09)80810-1
  28. Hawksworth, D.L., Crous, P.W,, Redhead, S.A., Reynolds, D.R., Samson, R.A., Seifert, K.A., Taylor, J.W., Wingfield, M.J., Abaci, O., Aime, C., Asan, A., Bai, F.Y., de Beer, Z.W., Begerow, D., Berikten, D., Boekhout, T., Buchanan, P.K., Burgess, T., Buzina, W., Cai, L., Cannon, P.F., Crane, J.L., Damm, U., Daniel, H.M., van Diepeningen, A.D., Druzhinina, I., Dyer, P.S., Eberhardt, U., Fell, J.W., Frisvad, J.C., Geiser, D.M., Geml, J., Glienke, C., Gräfenhan, T., Groenewald, J.Z., Groenewald, M., de Gruyter, J., Guého-Kellermann, E., Guo, L.D., Hibbett, D.S., Hong, S.B., de Hoog, G.S., Houbraken, J., Huhndorf, S.M., Hyde, K.D., Ismail, A., Johnston, P.R., Kadaifciler, D.G., Kirk, P.M., Kõljalg, U., Kurtzman, C.P., Lagneau, P.E., Lévesque, C.A., Liu, X., Lombard, L., Meyer, W., Miller, A., Minter, D.W., Najafzadeh, M.J., Norvell, L., Ozerskaya, S.M., Oziç, R., Pennycook, S.R., Peterson, S.W., Pettersson, O.V., Quaedvlieg, W., Robert, V.A., Ruibal, C., Schnürer, J., Schroers, H.J., Shivas, R., Slippers, B., Spierenburg, H., Takashima, M., Taşkın, E., Thines, M., Thrane, U., Uztan, A.H., van Raak, M., Varga, J., Vasco, A., Verkley, G., Videira, S.I., de Vries, R.P., Weir, B.S., Yilmaz, N., Yurkov, A. & Zhang, N. (2011) The Amsterdam Declaration on Fungal Nomenclature. IMA Fungus 2: 105–112. https://doi.org/10.5598/imafungus.2011.02.01.14
  29. Hennings, P. (1908) Fungi S. Paulenses IV a cl. Puttmans collecti. Hedwigia 48: 13.
  30. Huelsenbeck, J., Ronquist, F., Nielsen, R. & Bollback, J.P, (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 310–2314. https://doi.org/10.1126/science.1065889
  31. Huson, D.H., Kloepper, T. & Bryant, D. (2014) SplitsTree 4.0-Computation of phylogenetic trees and networks. Bioinformatics 14: 68–73.
  32. Hyde, K.D., Nilsson, R.H., Alias, H.A., Ariyawansa, H.A., Blair, J.E., Cai, L., de Cock, A.W.A.M., Dissanayake, A.J., Glockling, S.L., Goonasekara, I.D., Gorczak, M., Hahn, M., Jayawardena, R.S., van Kan, J.A.L., Laurence, M.H., Lévesque, C.A., Li, X., Liu, J., Maharachchikumbura, S.N.N., Manamgoda, D.S., Martin, F.N., McKenzie, E.H.C., McTaggart, A.R., Mortimer, P.E., Nair, P.V.R., Pawłowska, J., Rintoul, T.L., Shivas, R.G., Spies, C.F.J., Summerell, B.A., Taylor, P.W.J., Terhem, R.B., Udayanga, D., Vaghefi, N., Walther, G., Wilk, M., Wrzosek, M., Xu, J., Yan, J. & Zhou, N. (2014) One stop shop: backbones trees for important phytopathogenic genera: I (2014). Fungal Diversity 67: 21–125. https://doi.org/10.1007/s13225-014-0298-1
  33. Hyde, K.D., Norphanphoun, C., Chen, J., Dissanayake, A.J., Doilom, M., Hongsanan, S., Jayawardena, R.S., Jeewon, R., Perera, R.H., Thongbai, B., Wanasinghe, D.N., Wisitrassameewong, K., Tibpromma, S. & Stadler, M. (2018) Thailand’s amazing diversity: up to 96% of fungi in northern Thailand may be novel. Fungal Diversity 93: 215–239. https://doi.org/10.1007/s13225-018-0415-7
  34. Hyde, K.D., Jeewon, R., Chen, Y.J., Bhunjun, C.S., Calabon, M.S., Jiang, H.B., Lin, C.G., Norphanphoun, C., Sysouphanthong, P., Pem, D., Tibpromma, S., Zhang, Q., Doilom, M., Jayawardena, R.S., Liu, J.K., Maharachchikumbura, S.S.N., Phukhamsakda, C., Phookamsak, R., Al-Sadi, A.M., Thongklang, N., Wang, Y., Gafforov, Y., Jones, E.B.G. & Lumyong, S. (2020) The numbers of fungi: is the descriptive curve flattening? Fungal Diversity 103: 219–271. https://doi.org/10.1007/s13225-020-00458-2
  35. Index Fungorum (2024) Index Fungorum. Available from: http://www.indexfungorum.org/Names/Names.asp (accessed: 25 January 2024).
  36. Jayasiri, S.C., Hyde, K.D., Ariyawansa, H.A., Bhat, J., Buyck, B., Cai, L., Dai, Y.C., Abd-Elsalam, K.A., Ertz, D., Hidayat, I., Jeewon, R., Jones, E.B.G., Bahkali, A.H., Karunarathna, S.C., Liu, J.K., Luangsa-ard, J.J., Lumbsch, H.T., Maharachchikumbura, S.S.N., McKenzie, E.H.C., Moncalvo, J.M., Ghobad-Nejhad, M., Nilsson, H., Pang, K.L., Pereira, O.L., Phillips, A.J.L., Raspé, O., Rollins, A.W., Romero, A.I., Etayo, J., Selçuk, F., Stephenson, S.L., Suetrong, S., Taylor, J.E., Tsui, C.K.M., Vizzini, A., Abdel-Wahab, M.A., Wen, T.C., Boonmee, S., Dai, D.Q., Daranagama, D.A., Dissanayake, A.J., Ekanayaka, A.H., Fryar, S.C., Hongsanan, S. Jayawardena, R.S., Li, W.J., Perera, R.H., Phookamsak, R., de Silva, N.I., Thambugala, K.M.,Tian, Q., Wijayawardene, N.N., Zhao, R.L., Zhao, Q., Kang, J.C. & Promputtha, I. (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74: 3–18. https://doi.org/10.1007/s13225-015-0351-8
  37. Jayawardena, R.S., Hyde, K.D., Jeewon, R., Ghobad-Nejhad, M., Wanasinghe, D.N., Liu, N., Phillips, A.J.L., Oliveira-Filho, J.R.C., da Silva, G.A., Gibertoni, T.B., Abeywikrama, P., Carris, L.M., Chethana, K.W.T., Dissanayake, A.J., Hongsanan, S., Jayasiri, S.C., McTaggart, A.R., Perera, R.H., Phutthacharoen, K., Savchenko, K.G., Shivas, R.G., Thongklang, N., Dong, W., Wei, D., Wijayawardena, N.N. & Kang, J.C. (2019) One stop shop II: taxonomic update with molecular phylogeny for important phytopathogenic genera: 26–50 (2019). Fungal Diversity 94: 41–129. https://doi.org/10.1007/s13225-019-00418-5
  38. Jayawardena, R.S., Hyde, K.D., Gomes de Farias, A.R., Bhunjun, C.S., Ferdinandez, H.S., Manamgoda, D.S., Udayanga, D., Herath, I.S., Thambugala, K.M., Manawasinghe, I.S., Gajanayake, A.J., Samarakoon, B.C., Bundhun, D., Gomdola, D., Huanraluek, N., Sun, Y.R., Tang, X., Promputtha, I. & Thines, M. (2021) What is a species in fungal plant pathogens? Fungal Diversity 109: 239–266. https://doi.org/10.1007/s13225-021-00484-8
  39. Jiang, Y., Zhang, Z., Zhang, J., Wang, S. & Zhang, X. (2023) Morphological and Phylogenetic Analyses Reveal Three New Species of Phyllosticta (Botryosphaeriales, Phyllostictaceae) in China. Journal of Fungi 10: 7. https://doi.org/10.3390/jof10010007
  40. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108
  41. Kotzé, J.M. (1981) Epidemiology and control of citrus black spot in South Africa. Plant Disease 65: 945. https://doi.org/10.1094/pd-65-945
  42. Kuo, K. & Hoch, H.C. (2018) The parasitic relationship between Phyllosticta ampelicida and Vitis vinifera. Mycologia 88: 626–634. https://doi.org/10.1080/00275514.1996.12026695
  43. Liu, J.K., Phookamsak, R., Doilom, M., Wikee, S., Li, Y.M., Ariyawansha, H., Boonmee, S., Chomnunti, P., Dai, D.Q., Bhat, J.D., Romero, A.I., Zhuang, W.Y., Monkai, J., Jones, E.B.G., Chukeatirote, E., Ko, T.W.K., Zhao, Y.C., Wang, Y. & Hyde, K.D. (2012) Towards a natural classification of Botryosphaeriales. Fungal Diversity 57: 149–210. https://doi.org/10.1007/s13225-012-0207-4
  44. Liu, Y., Whelen, S. & Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  45. Maharachchikumbura, S.S.N., Chen, Y., Ariyawansa, H.A., Hyde, K.D., Haelewaters, D., Perera, R.H., Samarakoon, M.C., Wanasinghe, D.N., Bustamante, D.E., Liu, J.K., Lawrence, D.P., Cheewangkoon, R. & Stadler, M. (2021) Integrative approaches for species delimitation in Ascomycota. Fungal Diversity 109: 155–179. https://doi.org/10.1007/s13225-021-00486-6
  46. Manawasinghe, I.S., Zhang, Y.X., Liao, C.F., Xiong, Y.R., Kularathnage, N.D., Luo, M., Chen, J.W., Mai, Z.L., Yang, Y.H., Zhao, H.J., Doilom, M., Liu, J.W., Senanayake, I.C., You, L.Q., Hyde, K.D., Calabon, M.S., Chaiwan, N., Liu, N.G.,Tang, S.M., Sysouphanthong, P., Du, T.Y., Pasouvang, P., Pem, D., Phonemany, M., Rathnayaka, A.R., Tennakoon, D.S., Wijesinghe, S.N., Thongklang, N., Jones, E.B.G., Karunarathna, S.C., Tibpromma, S., Ishaq, M., Fiaz, M., Samarakoon, M.C., Dutta, A.K., Khalid, A.N., Camporesi, E. & Gafforov, Y.S. (2022) Mycosphere notes 345–386. Mycosphere 13: 454–557. https://doi.org/10.5943/mycosphere/13/1/3
  47. McManus, P.S. (1998) First report of early rot of cranberry caused by Phyllosticta vaccinii in Wisconsin. Plant Disease 82: 350. https://doi.org/10.1094/pdis.1998.82.3.350a
  48. Miller, M., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the 2011 TeraGrid Conference: extreme digital discovery. pp. 1–8. https://doi.org/10.1145/2016741.2016785
  49. Myllys, L., Stenroos, S. & Thell, A. (2002) New genes for phylogenetic studies of lichenized fungi: glyceraldehyde-3-phosphate dehydrogenase and beta-tubulin genes. The Lichenologist 34: 237–246. https://doi.org/10.1006/lich.2002.0390
  50. Norphanphoun, C., Hongsanan, S., Gentekaki, E., Chen, Y.J., Kuo, C.H. & Hyde, K.D. (2020) Differentiation of species complexes in Phyllosticta enables better species resolution. Mycosphere 11: 2542–2628. https://doi.org/10.5943/mycosphere/11/1/16
  51. Nylander, J.A.A. (2004) MrModeltest v2. Evolutionary Biology Center, Uppsala University.
  52. O’Donnell, K., Kistlerr, H.C., Cigelnik, E. & Ploetz, R.C. (1998) Multiple evolutionary origins of the fungus causing panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95: 2044–2049. https://doi.org/10.1073/pnas.95.5.2044
  53. Okane, I., Lumyong, S., Nakagiri, A. & Ito, T. (2003) Extensive host range of an endophytic fungus, Guignardia endophyllicola (anamorph: Phyllosticta capitalensis). Mycoscience 44: 353–363. https://doi.org/10.1007/s10267-003-0128-x
  54. Persoon, C.H. (1818) Traité sur les champignons comestibles, contenant lindication des espèces nuisibles; a lhistoire des champignons. Paris (France): Belin-Leprieur.
  55. Promputtha, I., Lumyong, S., Dhanasekaran, V., McKenzie, E.H.C., Hyde, K.D. & Jeewon, R. (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microbial Ecology 53: 579–590. https://doi.org/10.1007/s00248-006-9117-x
  56. Rai, M. & Agarkar, G. (2016) Plant-fungal interactions: what triggers the fungi to switch among lifestyles? Critical Reviews in Microbiology 42: 428–438. https://doi.org/10.3109/1040841x.2014.958052
  57. Rambaut, A. & Drummond, A. (2014) FigTree v1. 3.1 Institute of Evolutionary Biology. University of Edinburgh.
  58. Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  59. Sabahi, F., Mafakheri, H., Mirtalebi, M., Dolatabadi, S., Guarnaccia, V., Kharrati-Koopaee, H. & Banihashemi, Z. (2022) First report of Phyllosticta capitalensis causing leaf spot of Japanese privet (Ligustrum japonicum) in Iran. Journal of General Plant Pathology 88: 217–223. https://doi.org/10.1007/s10327-022-01063-8
  60. Schoch, C.L., Shoemaker, R.A., Seifert, K.A., Hambleton, S., Spatafora, J.W. & Crous, P.W. (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98: 1041–1052. https://doi.org/10.1080/15572536.2006.11832632
  61. Seaver, F.J. (1922) Phyllostictaceae. North American Flora 6: 3–84.
  62. Senanayake, I.C., Rathnayaka, A.R., Marasinghe, D.S., Calabon, M.S., Gentekaki, E., Lee, H.B., Hurdeal, V.G., Pem, D., Dissanayake, L.S., Wijesinghe, S.N., Bundhun, D., Nguyen, T.T., Goonasekara, I.D., Abeywickrama, P.D., Bhunjun, C.S., Jayawardena, R.S., Wanasinghe, D.N., Jeewon, R., Bhat, D.J. & Xiang, M.M. (2020) Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11: 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20
  63. Species Fungorum (2024) Species Fungorum. Available from: http://www.speciesfungorum.org/Names/Names.asp (accessed: 25 January 2024).
  64. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  65. Sui, X.N., Guo, M.J., Zhou, H. & Hou, C.L. (2023) Four new species of Phyllosticta from China based on morphological and phylogenetic characterization. Mycology 14: 190–203. https://doi.org/10.1080/21501203.2023.2225552
  66. Sung, G.H., Sung, J.M., Hywel-Jones, N.L. & Spatafora, J.W. (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44: 1204–1223. https://doi.org/10.1016/j.ympev.2007.03.011
  67. Sutton, B. (1980) The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, United Kingdom. 696 pp.
  68. Swoford, D.L. (2002) PAUP: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer, Sunderland.
  69. Taylor, J.W., Jacobson, D.J., Kroken, S., Kasuga, T., Geiser, D.M., Hibbett, D.S. & Fisher, M.C. (2000) Phylogenetic species recognition and species concepts in Fungi. Fungal Genetics and Biology 31: 21–32. https://doi.org/10.1006/fgbi.2000.1228
  70. Tennakoon, D.S., Kuo, C.H., Maharachchikumbura, S.S., Thambugala, K.M., Gentekaki, E., Phillips, A.J., Bhat, D.J., Wanasinghe, D.N., de Silva, N.I., Promputtha, I. & Hyde, K.D. (2021) Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Diversity 108: 1–215. https://doi.org/10.1007/s13225-021-00474-w
  71. Tennakoon, D.S., Kuo, C.H., Purahong, W., Gentekaki, E., Pumas, C., Promputtha, I. & Hyde, K.D. (2022) Fungal community succession on decomposing leaf litter across five phylogenetically related tree species in a subtropical forest. Fungal Diversity 115: 73–103. https://doi.org/10.1007/s13225-022-00508-x
  72. Tran, N.T., Miles, A.K., Dietzgen, R.G. & Drenth, A. (2019) Phyllosticta capitalensis and P. paracapitalensis are endophytic fungi that show potential to inhibit pathogenic P. citricarpa on citrus. Australasian Plant Pathology 48: 281–296. https://doi.org/10.1007/s13313-019-00628-0
  73. Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics 27: 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  74. van der Aa, H. (1973) Studies in Phyllosticta I. Studies in Mycology 5: 1–110. [https://ci.nii.ac.jp/naid/10024288814]
  75. van der Aa, H. & Vanev, S. (2002) A revision of the species described in Phyllosticta. Centraalbureau voor Schimmelcultures, Utrecht, Netherlands, 510 pp.
  76. Viala, P. & Ravaz, L. (1892) Sur la dénomination botanique (Guignardia bidwellii) du black-rot. Typogr. Charles Boehm.
  77. Wang, M., Liu, B., Ruan, R., Zeng, Y., Luo, J. & Li, H. (2020) Genomic sequencing of Phyllosticta citriasiana provides insight into its conservation and diversification with two closely related Phyllosticta species associated with citrus. Frontiers in Microbiology 10: 2979. https://doi.org/10.3389/fmicb.2019.02979
  78. Wang, C.B., Yang, J., Li, Y., Xue, H., Piao, C.G. & Jiang, N. (2023a) Multi-gene phylogeny and morphology of two new Phyllosticta (Phyllostictaceae, Botryosphaeriales) species from China. MycoKeys 10: 189–207. https://doi.org/10.3897/mycokeys.95.100414
  79. Wang, C.B., Wang, T.T., Ma, C.Y., Xue, H., Li, Y., Piao, C.G. & Jiang, N. (2023b) Phyllosticta rizhaoensis sp. nov. causing leaf blight of Ophiopogon japonicus in China. Fungal Systematics and Evolution 11: 43–50. https://doi.org/10.3114/fuse.2023.11.03
  80. White, T.J., Bruns, T., Lee, S.J.W.T. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols 64: 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1
  81. Wijayawardene, N.N., Phillips, A.J.L., Tibpromma, S., Dai, D.Q., Selbmann, L., Monteiro, J.S., Aptroot, A., Flakus, A., Rajeshkumar, K.C., Coleine, C., Pereira, D.S., Fan, X., Zhang, L., Maharachchikumbura, S.S.N., Souza, M.F., Kukwa, M., Suwannarach, N., Rodriguez-Flakus, P., Ashtekar, N., Dauner, L., Tang, L.Z., Jin, X.C. & Karunarathna, S.C. (2021a) Looking for the undiscovered asexual taxa: case studies from lesser studied life modes and habitats. Mycosphere 12: 1290–1333. https://doi.org/10.5943/mycosphere/12/1/17
  82. Wijayawardene, N.N., Hyde, K.D., Anand, G., Dissanayake, L.S., Tang, L.Z. & Dai, D.Q. (2021b) Towards incorporating asexually reproducing fungi in the natural classification and notes for pleomorphic genera. Mycosphere 12: 238–405. https://doi.org/10.5943/mycosphere/12/1/4
  83. Wijayawardene, N.N., Hyde, K.D., Dai, D.Q., Sánchez-García, M., Goto, B.T., Saxena, R.K., Erdoğdu, M., Selçuk, F., Rajeshkumar, K.C., Aptroot, A., Błaszkowski, J., Boonyuen, N., da Silva, G.A., de Souza, F.A., Dong, W., Ertz, D., Haelewaters, D., Jones, E.B.G., Karunarathna, S.C., Kirk, P.M., Kukwa, M., Kumla, J., Leontyev, D.V., Lumbsch, H.T., Maharachchikumbura, S.S.N., Marguno, F., Martínez-Rodríguez, P., Mešić, A., Monteiro, J.S., Oehl, F., Pawłowska, J., Pem, D., Pfliegler, W.P., Phillips, A.J.L., Pošta, A., He, M.Q., Li, J.X., Raza, M., Sruthi, O.P., Suetrong, S., Suwannarach, N., Tedersoo, L., Thiyagaraja, V., Tibpromma, S., Tkalčec, Z., Tokarev, Y.S., Wanasinghe, D.N., Wijesundara, D.S., Wimalaseana, S.D.M.K., Madrid, H., Zhang, G.Q., Gao, Y., Sánchez-Castro, I., Tang, L.Z., Stadler, M., Yurkov, A. & Thines, M. (2022a) Outline of Fungi and fungus-like taxa–2021. Mycosphere 13: 53–453. https://doi.org/10.5943/mycosphere/13/1/2
  84. Wijayawardene, N.N., Phillips, A.J.L., Pereira, D.S., Dai, D.Q., Aptroot, A., Monteiro, J.S., Druzhinina, I.S., Cai, F., Fan, X., Selbmann, L., Coleine, C., Castañeda-Ruiz, R.F., Kukwa, M., Flakus, A., Fiuza, P.O., Kirk, P.M., Kumar, K.C.R., Arachchi, I.S.L., Suwannarach, N., Tang, L.Z., Boekhout, T., Tan, C.S., Jayasinghe, R.P.P.K. & Thines, M. (2022b) Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). Fungal Diversity 114: 463–490. https://doi.org/10.1007/S13225-022-00500-5
  85. Wikee, S., Udayanga, D., Crous, P.W., Chukeatirote, E., McKenzie, E.H., Bahkali, A.H., Dai, D. & Hyde, K.D. (2011) Phyllosticta - An overview of current status of species recognition. Fungal Diversity 51: 43–61. https://doi.org/10.1007/S13225-011-0146-5
  86. Wikee, S., Wulandari, N.F., McKenzie, E.H.C. & Hyde, K.D. (2012) Phyllosticta ophiopogonis sp. nov. from Ophiopogon japonicus (Liliaceae). Saudi Journal of Biological Sciences 19: 13–16. https://doi.org/10.1016/j.sjbs.2011.10.003
  87. Wikee, S., Lombard, L., Nakashima, C., Motohashi, K., Chukeatirote, E., Cheewangkoon, R., McKenzie, E.H.C., Hyde, K.D. & Crous, P. (2013a) A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales). Studies in Mycology 76: 1–29. https://doi.org/10.3114/sim0019
  88. Wikee, S., Lombard, L., Crous, P.W., Nakashima, C., Motohashi, K., Chukeatirote, E., Alias, S.A., McKenzie, E.H. & Hyde, K.D. (2013b) Phyllosticta capitalensis, a widespread endophyte of plants. Fungal Diversity 60: 91–105. https://doi.org/10.1007/s13225-013-0235-8
  89. Wingfield, M.J., De Beer, Z.W., Slippers, B., Wingfield, B.D., Groenewald, J.Z., Lombard, L. & Crous, P.W. (2011) One fungus, one name promotes progressive plant pathology. Molecular Plant Pathology 13: 604–613. https://doi.org/10.1111/J.1364-3703.2011.00768.X
  90. Wong, M.H., Crous, P.W., Henderson, J., Groenewald, J.Z. & Drenth, A. (2012) Phyllosticta species associated with freckle disease of banana. Fungal Diversity 56: 173–187. https://doi.org/10.1007/s13225-012-0182-9
  91. Wong, M.H., Henderson, J., Aitken, E.A.B. & Drenth, A. (2013) Mode of infection of Phyllosticta maculata on banana as revealed by scanning electron microscopy. Journal of Phytopathology 161: 135–141. https://doi.org/10.1111/jph.12042
  92. Wu, S.P., Liu, Y.X., Yuan, J.I.E., Wang, Y., Hyde, K.D. & Liu, Z.Y. (2014) Phyllosticta species from banana (Musa sp.) in Chongqing and Guizhou Provinces, China. Phytotaxa 188: 135–144. https://doi.org/10.11646/phytotaxa.188.3.2
  93. Wulandari, N.F., To-Anun, C., Hyde, K.D., Duong, L.M., De Gruyter, J., Meffert, J.P., Groenewald, J.Z. & Crous, P.W. (2009) Phyllosticta citriasiana sp. nov., the cause of citrus tan spot of Citrus maxima in Asia. Fungal Diversity 34: 23–39.
  94. Wulandari, N.F., To-Anun, C., Cai, L., Abdelsalam, K.A. & Hyde, K.D. (2010) Guignardia/Phyllosticta species on banana. Cryptogamie, Mycologie 31: 403–418.
  95. Zavala, M.G.M., Er, H.L., Goss, E.M., Wang, N.Y., Dewdney, M. & van Bruggen, A.H. (2014) Genetic variation among Phyllosticta strains isolated from citrus in Florida that are pathogenic or nonpathogenic to citrus. Tropical Plant Patholology 39: 119–128. https://doi.org/10.1590/s1982-56762014000200002
  96. Zhang, Z., Liu, X., Zhang, X. & Meng, Z. (2022) Morphological and phylogenetic analyses reveal two new species and a new record of Phyllosticta (Botryosphaeriales, Phyllostictaceae) from Hainan, China. Mycokeys 91: 1–23. https://doi.org/10.3897/mycokeys.91.84803
  97. Zhou, N., Chen, Q., Carroll, G., Zhang, N., Shivas, R.G. & Cai, L. (2015) Polyphasic characterization of four new plant pathogenic Phyllosticta species from China, Japan, and the United States. Fungal Biology 119: 433–446. https://doi.org/10.1016/j.funbio.2014.08.006