Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-10-27
Page range: 173-190
Abstract views: 266
PDF downloaded: 9

Morpho-colorimetric characterization of the perigonium of the Alstroemeria pulchra complex (Alstroemeriaceae, Alstroemerieae) as an aid to delimit its infraspecific taxa

Departamento de Producción Animal; Facultad de Agronomía; Universidad de Concepción; Chillán; Chile.
Departamento de Producción Animal; Facultad de Agronomía; Universidad de Concepción; Chillán; Chile.
Departamento de Botánica; Facultad de Ciencias Naturales y Oceanográficas; Universidad de Concepción; Concepción; Chile.
Departamento de Botánica; Facultad de Ciencias Naturales y Oceanográficas; Universidad de Concepción; Concepción; Chile.
Departamento de Botánica; Facultad de Ciencias Naturales y Oceanográficas; Universidad de Concepción; Concepción; Chile.
Departamento de Botánica; Facultad de Ciencias Naturales y Oceanográficas; Universidad de Concepción; Concepción; Chile.
Departamento de Producción Animal; Facultad de Agronomía; Universidad de Concepción; Chillán; Chile.
Departamento de Agroindustrias; Facultad de Ingeniería agrícola; Universidad de Concepción; Chillán; Chile.
Monocots CIELab colorimetry geometric morphometry image data analysis taxonomy

Abstract

The main taxonomic characters of Alstroemeria derive from the perianth and have traditionally been used from qualitative perspectives, which difficult their interpretation, especially in species considered as infraspecific complexes. Through spectrophotometry and specialized image analysis approaches, a total of one hundred and sixty flowers from twenty populations of the Alstroemeria pulchra complex were quantified. Our results allowed us to recognize the infraspecific taxa A. pulchra subsp. lavandulacea, A. pulchra var. maxima, and A. pulchra var. pulchra through the color, shape, size, and ornamental patterns of their tepals. The colorimetric information subjected to discriminant analysis corroborate the taxonomic utility of flower color. Similar results were obtained from the analysis of ornamental patterns, sizes, and shapes of the tepals. The discriminant analysis of the combined matrix that included the shape and ornamental patterns allowed us to identify three non-overlapping groups within A. pulchra, with a high differentiation degree. These results significantly contribute to improving the understanding of the phenotypic variability of A. pulchra and its infraspecific taxa. This information will serve as a basis for systematic studies that will address the relationships between these and other related taxa from an integrative taxonomic perspective.

 

References

  1. Adams, D.C., Rohlf, F.J. & Slice, D.E. (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology 71: 5–16. https://doi.org/10.1080/11250000409356545
  2. Adobe Inc. (2019) Adobe Photoshop, version 22.0.0. Available from: https://www.adobe.com/products/photoshop.html (accessed Jun. 2022).
  3. Baeza, C.M., Finot, V., Ruiz, E., Carrasco, P., Novoa, P., Rosas, M. & Toro-Núñez, O. (2018a) Cytotaxonomic study of the Chilean endemic complex Alstroemeria magnifica Herb. (Alstroemeriaceae). Genetics and Molecular Biology 41: 434–441. https://doi.org/10.1590/1678-4685-gmb-2017-0157
  4. Baeza, C., Toro, O., Ruiz, E., Finot, V., Carrasco, P. & Villalobos, N. (2018b) Polimorfismo de tamaño entre cromosomas homólogos, un caso extremo en Alstroemeria pulchra Sims. (Alstroemeriaceae), especie endémica de Chile. Gayana Botánica 75: 663–666. https://doi.org/10.4067/S0717-66432018000200663
  5. Bayer, E. (1987) Die Gattung Alstroemeria in Chile. Mitteilungen der Botanischen Staatssammlung Munchen 24: 1–362.
  6. Bonhomme, V., Picq, S. Gaucherel, C. & Claude, J. (2014) Momocs: outline analysis using R. Journal of Statistical Software 56: 1–24. https://doi.org/10.18637/jss.v056.i13
  7. Botto-Mahan, C. & Ojeda-Camacho, M. (2000) The importance of floral damage for pollinator visitation in Alstroemeria ligtu L. Revista Chilena de Entomologia 26: 73–76.
  8. Botto-Mahan, C., Ramírez, P.A., Ossa, C.G., Medel, R., Ojeda-Camacho, M. & González, A.V. (2011) Floral herbivory affects female reproductive success and pollinator visitation in the perennial herb Alstroemeria ligtu (Alstroemeriaceae). International Journal of Plant Sciences 172: 1130–1136. https://doi.org/10.1086/662029
  9. Chittka, L., Shmida, A., Troje, N. & Menzel, R. (2004) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Research 34: 1489–1508. https://doi.org/10.1016/0042-6989(94)90151-1
  10. CIE (COMMISSION INTERNATIONALE DE L´ÉCLAIRAGE) (1978) Recommendations on uniform color spaces: Color-difference equations, psychometric color terms. CIE publication 15 (suppl. 2): 1–21. [Paris] https://doi.org/10.1002/j.1520-6378.1977.tb00102.x
  11. Cope, S.C., Corney, D., Clark, J.Y. Remagino, P. & Wilkin, P. (2012) Plant species identification using digital morphometrics: A review. Expert Systems with Applications 39: 7562–7573. https://doi.org/10.1016/j.eswa.2012.01.073
  12. Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. & Robledo, C.W. (2016) Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina.
  13. Díaz, S. & Kattge, J. (1998) Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science 8: 463–474. https://doi.org/10.1111/j.1654-1103.1997.tb00842.x
  14. Escobedo, P.M.T. & Salas, J.A. (2008) P.Ch. Mahalanobis y las aplicaciones de su distancia estadística. Culcyt 5: 13–20.
  15. Felsenstein, J. (1985) Phylogenies and the Comparative Method. The American Naturalist 125: 1–15. https://doi.org/10.1086/284325
  16. Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R. & Thomson, J.D. (2004) Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics 35: 375–403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347
  17. Finot, V., Baeza, C., Melín, P., Novoa, P., Campos, J., Ruiz, E., Fuentes, G., Albornoz, P., Fuentealba, V., Carrasco, P. & Bastías, C. (2015) ¿Es Alstroemeria pulchra Sims var. maxima Phil. (Alstroemeriaceae) un miembro del complejo A. magnifica Herbert?: Estudio colorimétrico de los tépalos externos e internos de la flor. Gayana Botánica 72: 101–113. https://doi.org/10.4067/S0717-66432015000100013
  18. Finot, V.L., Baeza, C.M., Ruiz, E., Carrasco, P. & Melín, P. (2016) Análisis colorimétrico y morfométrico de la flor en poblaciones chilenas de Alstroemeria presliana Herb. (Alstroemeriaceae). Journal of the Botanical Research Institute of Texas 10: 89–108. [https://www.jstor.org/stable/44858830]
  19. Finot, V.L., Baeza, C.M., Ruiz, E., Toro, O. & Carrasco, P. (2018a) Towards an integrative taxonomy of the genus Alstroemeria (Alstroemeriaceae) in Chile: A comprehensive review. In: Selected Studies in Biodiversity. InTech Open Access, Croacia, pp. 229–265. https://doi.org/10.5772/intechopen.71823
  20. Finot, V.L., Baeza, C.M., Muñoz-Schick, M., Ruiz, E., Espejo, J., Alarcón, D., Carrasco, P., Novoa, P. & Eyzaguirre, M.T. (2018b) Guía de Campo Alstroemerias Chilenas. Ed. Corporación Chilena de la Madera, Concepción, 292 pp.
  21. Garaventa, H.A. (1971) Anales del Museo de Historia Natural de Valparaíso, vol. 4. Museo de Historia Natural de Valparaíso, Valparaíso, 73 pp.
  22. Gay, C. (1853) Historia Física y Política de Chile, Botánica. E. Thunot & Cia, Paris, 82 pp.
  23. Gómez, J.M., Torices, R., Lorite, J., Klingenberg, C.P. & Perfectti, F. (2016) The role of pollinators in the evolution of corolla shape variation, disparity, and integration in a highly diversified plant family with a conserved floral bauplan. Annals of Botany 117: 889–904. https://doi.org/10.1093/aob/mcv194
  24. Goslee, S.C. (2010) Correlation analysis of dissimilarity matrices. Plant Ecology 206: 279–286. https://doi.org/10.1007/s11258-009-9641-0
  25. Hastie, T., Tibshirani, R., Friedman, J.H. & Friedman, J.H. (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York, 758 pp. https://doi.org/10.1007/978-0-387-84858-7
  26. Hansen, D.M., Van der Niet, T. & Johnson, S.D. (2012) Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proceedings. Biological sciences 279: 634–639. https://doi.org/10.1098/rspb.2011.1349
  27. Herbert, W. (1837) Amaryllidaceae, J. Ridway & Sons, Piccadilly, 93 pp.
  28. Herbert, W. (1843) Edward’s Botanical Register, J. Ridway, Piccadilly, 64 pp.
  29. Hickey, L.J. (1973) Classification of the architecture of dicotyledonous leaves. American Journal of Botany 60: 17–33. https://doi.org/10.1002/j.1537-2197.1973.tb10192.x
  30. Hooker, W.J. (1823) Exotic Flora. W. Blackwood, Edinburgh, 65 pp.
  31. Hooker, W.J. (1828) The botanical cabinet consisting of coloured delineations of plants from all countries. John & Arthur Arch, London, 1497 pp.
  32. Johnson, S.D., Hargreaves, A.L. & Brown, M. (2019) Dark, bitter-tasting nectar functions as a filter of flower visitors in a bird-pollinated plant. Ecology 100 (2): e02564.
  33. Ker-Gawler, J.B. (1823) Botanical Register. J. Ridway, Piccadilly, 731 pp.
  34. Kashihara, Y., Shinoda, K., Murata, N., Araki, H. & Hoshino, Y. (2011) Evaluation of the horticultural traits of genus Alstroemeria and Bomarea (Alstroemeriaceae). Turkish Journal of Botany 35: 239–245. https://doi.org/10.3906/bot-1010-96
  35. Kruskal, W.H. & Wallis, W.A. (1952) Use of ranks on one-criterion variance analysis. Journal of the American Statistical Association 47: 583–621. https://doi.org/10.1080/01621459.1952.10483441
  36. Kuhl, F.P. & Giardina, C.R. (1982) Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18: 236–258. https://doi.org/10.1016/0146-664X(82)90034-X
  37. Legendre, P. & Legendre, L. (2012) Ecological data series. In: Legendre, P. & Legendre, L. (Eds.) Developments in Environmental Modelling. Elsevier, Oxford, UK, pp. 711–783. https://doi.org/10.1016/B978-0-444-53868-0.50012-5
  38. Leonard, A.S. & Papaj, D.R. (2011) ‘X’ marks the spot: The possible benefits of nectar guides to bees and plants. Functional Ecology 25: 1293–1301. https://doi.org/10.1111/j.1365-2435.2011.01885.x
  39. Leonard, A.S., Brent, J., Papaj, D.R. & Dornhaus, A. (2013) Floral Nectar Guide Patterns Discourage Nectar Robbing by Bumble Bees. PLOS ONE 8 (2): e55914. https://doi.org/10.1371/journal.pone.0055914
  40. Linnaeus, C. (1762) Planta Alströmeria. Johannes Petrus Falck, Vestrogothus, Upsala, 8 pp.
  41. Losos, J.B. (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11: 995–1003. https://doi.org/10.1111/j.1461-0248.2008.01229.x
  42. Mahalanobis, P.C. (1936) On the generalized distance in statistics. Proceedings of the National Institute of Science of India 12: 49–55.
  43. Mahibbur, R.M. & Govindarajulu, Z. (1997) A modification of the test of Shapiro and Wilks for normality. Journal of Applied Statistics 24: 219–235. https://doi.org/10.1080/02664769723828
  44. Maia, R., Eliason, C.M., Bitton, P.P., Doucet, S.M. & Shawkey, M.D. (2013) pavo: an R package for the analysis, visualization, and organization of spectral data. Methods in Ecology and Evolution 4: 906–913. https://doi.org/10.1111/2041-210X.12069
  45. Maia, R., Gruson, H., Endler, J.A. & White, T.E. (2019) pavo 2: New tools for the spectral and spatial analysis of colour in r. Methods in Ecology and Evolution 10: 1097–1107. https://doi.org/10.1111/2041-210X.13174
  46. McEwen, J.R. & Vamosi, J.C. (2010) Floral colour versus phylogeny in structuring subalpine flowering communities. Proceedings of the Royal Society B: Biological Sciences 277 (1701): 2957–2965. https://doi.org/10.1098/rspb.2010.0501
  47. Muñoz-Schick, M. & Moreira, A. (2003) Alstroemerias de Chile: diversidad, distribución y conservación. Taller La Era, Santiago, 140 pp.
  48. Murren, C.J. (2012) The integrated phenotype. Integrative and Comparative Biology 52: 64–76. https://doi.org/10.1093/icb/ics043
  49. Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853–858. https://doi.org/10.1038/35002501
  50. Neto, L.M., Berg, C.V.D. & Forzza, R.C. (2019) Linear and geometric morphometrics as tools to resolve species circumscription in the Pseudolaelia vellozicola complex (Orchidaceae, Laeliinae). Plant Ecology and Evolution 152: 53–67. https://doi.org/10.5091/plecevo.2019.1531
  51. Pascale, D. (2006) RGB coordinates of the Macbeth ColorChecker. The BabelColor Company: 1–16.
  52. Peres-Neto, P.R., Legendre, P., Dray, S. & Borcard, D. (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625. https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
  53. Philippii, R.A. (1864) Linnaea. F. Dümmler, Berlin, 266 pp.
  54. Posit team (2022) RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. Available from: http://www.posit.co/ (accessed 27 Oct. 2023).
  55. R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/ (accessed 27 Oct. 2023).
  56. Ravenna, P.F. (1988) New or noteworthy species of Alstroemeria (Alstroemeriaceae). Phytologia 64: 284 pp. https://doi.org/10.5962/bhl.part.24333
  57. Rodríguez, I., Gumbert, A., Hempel de Ibarra, N., Kunze, J. & Giurfa, M. (2004) Symmetry is in the eye of the ‘beeholder’: innate preference for bilateral symmetry in flower-naïve bumblebees. Naturwissenschaften 91: 374–377. https://doi.org/10.1007/s00114-004-0537-5
  58. Rodríguez, R., Marticorena, C., Alarcón, D., Baeza, C., Cavieres, L., Finot, V.L., Fuentes, N., Kiessling, A., Mihoc, M., Pauchard, A., Ruiz, E., Sanchez, P. & Marticorena, A. (2018) Catalogue of the vascular plants of Chile. Gayana Botánica 75: 1–430. https://doi.org/10.4067/S0717-66432018000100001
  59. Rubner, Y.C. Tomasi, L.J. (2000) The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40: 99–121. https://doi.org/10.1023/A:1026543900054
  60. Ruiz, E., Balboa, K., Negritto, M.A., Baeza, C. & Briceño, V. (2010) Variabilidad genética y morfológica y estructuración poblacional en Alstroemeria hookeri subsp. hookeri (Alstroemeriaceae), endémica de Chile. Revista Chilena de Historia Natural 83: 605–616. https://doi.org/10.4067/S0716-078X2010000400013
  61. Sanso, A.M. (1996) El género Alstroemeria (Alstroemeriaceae) en Argentina. Darwiniana 34: 349–382.
  62. Savriama, Y., Klingenberg, C.P. & Debat, V. (2012) Geometric morphometrics of corolla shape: dissecting components of symmetric and asymmetric variation in Erysimum mediohispanicum (Brassicaceae). New Phytologist 196: 945–954. https://doi.org/10.1111/j.1469-8137.2012.04312.x
  63. Shipunov, A.B. & Bateman, R.M. (2005) Geometric morphometrics as a tool for understanding Dactylorhiza (Orchidaceae) diversity in European Russia. Biological Journal of the Linnean Society 85: 1–12. https://doi.org/10.1111/j.1095-8312.2005.00468.x
  64. Sims, J. (1823) Curtis’s Botanical Maganize. Sherwood, Jones & Co, London, 2421 pp.
  65. Smith, S.D., Ané, C. & Baum, D.A. (2012) Macroevolutionary tests of pollination syndromes: exploring the consequences of floral specialization. American Journal of Botany 99: 219–228.
  66. Smith, S.D. & Goldberg, E.E. (2015) Tempo and mode of flower color evolution. American Journal of Botany 102: 1014–1025.
  67. Sprengel, C.K. & Sprengel, C.C. (1793) Das entdeckte Geheimniss der Natur im Bau und in der Befruchtung der Blumen. Vieweg, 291 pp.
  68. Stein, D.J. & Ludik, J. (Eds.) (1998) Neural networks and psychopathology: Connectionist models in practice and research. Cambridge University Press, 371 pp. https://doi.org/10.1017/CBO9780511547195
  69. Stournaras, K.E., Lo, E., Böhning-Gaese, K., Cazetta, E., Matthias Dehling, D., Schleuning, M., Stoddard, M.C., Donoghue, M.J., Prum, R.O. & Schaefer, H.M. (2013) How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales. New Phytologist 198: 617–629. https://doi.org/10.1111/nph.12157
  70. Stuessy, T.F. (2009) Plant taxonomy: the systematic evaluation of comparative data. Columbia University Press, 538 pp.
  71. Suárez, L.H., Gonzáles, W.L. & Gianoli, E. (2009) Foliar damage modifies floral attractiveness to pollinators in Alstroemeria exerens. Evolution Ecology 23: 545–555. https://doi.org/10.1007/s10682-008-9254-4
  72. Tabachnick, B.G., Fidell, L.S. & Ullman, J.B. (2013) Using multivariate statistics. Pearson, Boston, MA, 516 pp.
  73. Tukey, J.W. (1949) Comparing individual means in the analysis of Variance. Biometrics 5: 99–114. https://doi.org/10.2307/3001913
  74. Van Belleghem, S.M., Pappa, R., Ortiz–Zuazaga, H., Hendrickx, F., Jiggins, C.D., McMillan, W.O. & Counterman, B.A. (2017) Patternize: An R package for quantifying colour pattern variation. Methods in Ecology and Evolution 9: 390–398. https://doi.org/10.1111/2041-210X.12853
  75. Voss, A. (1895) Vilmorin’s Blumengärtnerei Beschreibung I. P. Parey, Berlin, 1040 pp.
  76. Wang, L.S., Hashimoto, F., Shiraishi, A., Aoki, N., Li, J.J. & Sakata, Y. (2004) Chemical taxonomy of the Xibei tree peony from China by floral pigmentation. Journal of Plant Research 117: 47–55. https://doi.org/10.1007/s10265-003-0130-6
  77. Warren, D.L., Matzke, N.J., Cardillo, M., Baumgartner, J.B., Beaumont, L.J., Turelli, M., Glor, R., Huron, N., Simoes, M., Iglesias, T. & Dinnage, R. (2021) ENMTools 1.0: An R package for comparative ecological biogeography. Ecography 44: 504–511. https://doi.org/10.1111/ecog.05485
  78. Weller, H. & Weastneat, M.W. (2018) Quantitative color profiling of digital images with earth mover’s distance using the R package Colordistance. PeerJ 7: e6398. https://doi.org/10.7717/peerj.6398