Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-08-03
Page range: 23-40
Abstract views: 140
PDF downloaded: 13

Molecular phylogeny and taxonomy of the genus Nanocnide (Urticaceae) with particular attention to the Ryukyu Islands endemic N. lobata

Graduate School of Science, The University of Tokyo, building 3, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan. †Present address: National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan.
College of Life Sciences, Zhejiang University, 310058, 866 Yuhangtan Rd., Xihu District, Hangzhou 310058 Zhejiang, China.
Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki-shi, Miyagi 989-6711, Japan.
Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki-shi, Miyagi 989-6711, Japan.
Graduate School of Arts and Sciences, The University of Tokyo, building 3, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
Eudicots conservation Nanocnide japonica Nanocnide zhejiangensis seed mucilage Japan

Abstract

A plant named Nanocnide pilosa (Urticaceae) is assessed as a critically endangered species in Japan. However, this name has been placed in synonymy with N. lobata in the Flora of China, and this treatment is widely accepted outside of Japan. Although plants known as N. pilosa and N. lobata have been known to have morphological differences, their phylogenetic relationships have never been investigated using multiple samples per taxon. To elucidate the phylogeny and taxonomic status of N. pilosa and N. lobata, we conducted phylogenetic and population genetic analyses of the genus Nanocnide using internal transcribed spacer regions and MIG-seq together with morphological observations. Our results suggest that N. pilosa and N. lobata are sister taxa, and that each of them comprises a distinct clade in the MIG-seq tree. Based on these results, we propose treating N. pilosa and N. lobata as distinct species. Our study also revealed that N. pilosa has a widespread distribution in the subtropical regions of Mainland China and southern part of the Kyushu Island, Japan; whilst N. lobata is endemic to the Ryukyu Islands, Japan. In addition, we report new information on morphology of the remaining species of Nanocnide.

References

  1. Blume, C.L.R. von (1856) Museum Botanicum Lugduno-Batavum, sive, stirpium exoticarum novarum vel minus cognitarum ex vivis aut siccis brevis ex positio, 2. E. J. Brill, Lugdunum-Batavorum, 154 pp. https://doi.org/10.5962/bhl.title.274
  2. Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: A flexible trimmer for Illumina Sequence Data, Bioinformatics 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  3. Borchsenius, F. (2009) FastGap homepage, FastGap 1.2. Department of Biosciences, Aarhus University, Denmark. Available from: http://www.aubot.dk/FastGap_home.htm (accessed: 12 July 2019).
  4. Bruijn, A.J. de (1853) POLYGONEAE Juss. In. Miquel, F.A.G. (Ed.) Plantae junghuhnianae :enumeratio plantarum, quas, in insulis Java et Sumatra, Sythoff, A.W./Baillière, J.B., Logdunum Batavorum/Paris. pp. 302–311. https://doi.org/10.5962/bhl.title.388
  5. Chen, J. & Monro, A.K. (2003) Urticaceae. 6. Pilea. In: Wu., Z.-Y., Peter, H.R. & Hong, D.-Y. (Eds.) Flora of China, vol. 5. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis. pp. 92–120.
  6. Chen, J., Friis, I. & Wilmot-Dear, C.M. (2003a) Urticaceae. 2. Nanocnide. In: Wu, Z.-Y., Peter, H.R. & Hong, D.-Y. (Eds.) Flora of China, vol. 5. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis. pp. 84–85
  7. Chen, J., Friis, I. & Wilmot-Dear, C.M. (2003b) Urticaceae. 3. Laportea. In: Wu, Z.-Y., Peter, H.R. & Hong, D.-Y. (Eds.) Flora of China, vol. 5. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis. pp. 85–89.
  8. de Candolle, A.P. (1869) Prodromus Systematis Naturalis Regni Vegetabilis 16. C. Lahure, Paris, 163 pp. https://doi.org/10.5962/bhl.title.286
  9. Earl, D.A. & vonHoldt, B.M. (2012) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361. https://doi.org/10.1007/s12686-011-9548-7
  10. Eaton, D.A.R. & Overcast, I. (2020) ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36: 2592–2594. https://doi.org/10.1093/bioinformatics/btz966
  11. Evanno, G., Regnaut, S. & Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14 (8): 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  12. Forsskål, P. (1775) Flora Aegyptiaco-Arabica. sive, descriptions plantarum, quas per Aegyptum inferiorem et Arabiam felicem. Officina Mölleri, Haunia [Copemhagen]. 162 pp. https://doi.org/10.5962/bhl.title.41
  13. Friis, I. (1981) A synopsis of Girardinia (Urticaceae). Kew Bulletin 36: 143–157. https://doi.org/10.2307/4119014
  14. Grosse-Veldmann, B., Nürk, N.M., Smissen, R., Breitwieser, I., Quandt, D. & Weigend, M. (2016) Pulling the sting out of nettle systematics—A comprehensive phylogeny of the genus Urtica L. (Urticaceae). Molecular Phylogenetics and Evolution 102: 9–19. https://doi.org/10.1016/j.ympev.2016.05.019
  15. Handel-Mazzetti, H. (1929) Anthophyta. Symbolae Sinicae 7: 1–730. https://doi.org/10.5962/bhl.title.878
  16. Henning, T., Quandt, D., Grosse-Veldmann, B., Monro, A. & Weigend, M. (2014) Weeding the nettles II: A delimitation of “Urtica dioica L.” (Urticaceae) based on morphological and molecular data, including a rehabilitation of Urtica gracilis Ait. Phytotaxa 162: 61–83. https://doi.org/10.11646/phytotaxa.162.2.1
  17. Hornemann, J.W. (1815) Hortus Regius Botanicus Hafniensis, vol. 2. E. A. H. Mölleri, Hafniae [Copenhagen].
  18. Huang, H. & Knowles, L.L. (2016) Unforeseen consequences of excluding missing data from next-generation sequences: simulation study of RAD sequences. Systematic Biology 65: 357–365. https://doi.org/10.1093/sysbio/syu046
  19. Iino, S. (2007) Katei de tsukureru kinoko no furi-zudorai. Chiba Mycological Club Bulletin 22: 10–13. [in Japanese]
  20. Jakobsson, M. & Rosenberg, N.A. (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806. https://doi.org/10.1093/bioinformatics/btm233
  21. Jin, X.-F., Zhang, J., Lu, Y.-F., Yang, W.-W. & Chen, W.-J. (2019) Nanocnide zhejiangensis sp. nov. (Urticaceae: Urticeae) from Zhejiang Province, East China. Nordic Journal of Botany 37: e02339. https://doi.org/10.1111/njb.02339
  22. Katoh, K., Rozewicki, J. & Yamada, D.K. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatic 20: 1160–1166. https://doi.org/10.1093/bib/bbx108
  23. Kim, C., Deng, T., Chase, M., Zhang, D.-G., Nie, Z.-L. & Sun, H. (2015) Generic phylogeny and character evolution in Urticeae (Urticaceae) inferred from nuclear and plastid DNA regions. Taxon 64: 65–78. https://doi.org/10.12705/641.20
  24. Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120. https://doi.org/10.1007/BF01731581
  25. Kitaguchi, M. (1937) On the Vegetation of Wei-hu-ling, Prov. Chi-lin, Manchuria. Report of the Institute of Scientific Research Manchoukuo 1: 255–324.
  26. Lamarck, J.B.A.P.M. & de Candolle, A.P. (1806) Synopsis Plantarum in Flora Gallica Descriptarum. H. Agasse, Parisiis, 184 pp.
  27. Léveillé, A.A.H. (1904) Contribution jubilaire a la flore du Kouy-Tchéou. Bulletin de la Société Botanique de France 51: CXLIII–CXLVI.
  28. Linnaeus, C.V. (1753) Species Plantarum, vol. 2. Laurentii Salvii, Holmiae, 794, 984 pp. https://doi.org/10.5962/bhl.title.669
  29. Maximowicz, C.J. (1876) Diagnoses plantarum Novarum Japoniae et Mandhuriae. Mélanges biologiques tirés du Bulletin de l’Académie Impériale des sciences de St. Petersburg 9: 581–660. https://doi.org/10.5962/bhl.title.46306
  30. Migo, H. (1934) Duae novae plantae Chinenses. Transactions of the Natural History Society of Formosa 24: 386–388.
  31. Ministry of the Environment, Japan. (2020) Red list 2020 by Ministry of the Environment. Available from: https://warp.da.ndl.go.jp/info:ndljp/pid/11534635/www.env.go.jp/press/files/jp/113667.pdf (accessed 27 Sep. 2022). [in Japanese]
  32. Moe, A.M. & Weiblen, G.D. (2012) Pollinator-mediated reproductive isolation among dioecious fig species (Ficus, Moraceae). Evolution 66: 3710–3721. https://doi.org/10.1111/j.1558-5646.2012.01727.x
  33. National Forestry and Grassland Administration. (2021) Guojiazhongdianbaohuyeshengzhiwuminglu (in Chinese). Available from: http://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm (accessed 24 Feb. 2022).
  34. National Museum of Nature and Science, Japan. (2022) Available from: https://www.kahaku.go.jp/english/research/db/botany/redlist/list/list_04_209_1.html (accessed 27 Sep. 2022).
  35. Pei, C. (1934) The vascular plants of Nanking IV. Contributions from the Biological Laboratory of the Science Society of China. Botanical Series. 9: 141–188.
  36. Pedersoli, G.D., Leme, F.M., Leite, V.G. & Teixeira, S.P. (2019) Anatomy solves the puzzle of explosive pollen release in wind-pollinated urticalean rosids. American Journal of Botany 106 (3): 489–506. https://doi.org/10.1002/ajb2.1254
  37. Pritchard, J.K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959. https://doi.org/10.1093/genetics/155.2.945
  38. Pritchard, J.K., Wen, X. & Falush, D. (2009) Documentation for structure software: Version 2.3. Available from: https://www.ccg.unam.mx/~vinuesa/tlem09/docs/structure_doc.pdf (accessed 11 May 2022)
  39. Qiu, H. & Gilbert, M.G. (2008) Euphorbiaceae. 40. Acalypha. In: Wu, Z.-Y., Peter, H.R. & Hong, D.-Y. (Eds.) Flora of China, vol. 11. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis. pp. 251–255.
  40. Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  41. Rochette, N.C., Rivera-Colón, A.G. & Catchen, J.M. (2019) Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology 28: 4737–4754. https://doi.org/10.1111/mec.15253
  42. Sagun, V.G., Levin, G.A. & van Welzen, P.C. (2010) Revision and phylogeny of Acalypha (Euphorbiaceae) in Malesia. Blumea 55: 21–60. https://doi.org/10.3767/000651910X499141
  43. Simmons, M.P. & Ochoterena, H. (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49: 369–381. https://doi.org/10.1093/sysbio/49.2.369
  44. Staflue, F.A. & Cowan, R.S. (1988) Taxonomic literature: a selective guide to botanical publications and collections with dates, commentaries and types. Bohn, Scheltema & Holkema, Utrecht, Netherland, 653 pp. https://doi.org/10.5962/bhl.title.48631
  45. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  46. Suyama, Y., Hirota, S.K., Matsuo, A., Tsunamoto, Y., Mitsuyuki, C., Shimura, A. & Okano, K. (2022) Complementary combination of multiplex high-throughput DNA sequencing for molecular phylogeny. Ecological Research 37: 171–181. https://doi.org/10.1111/1440-1703.12270
  47. Suyama, Y. & Matsuki, Y. (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Scientific Reports 5: 16963. https://doi.org/10.1038/srep16963
  48. Swarbrick, J.T. (1971) External mucilage production by the seeds of British plants. Botanical Journal of the Linnean Society 64: 157–162. https://doi.org/10.1111/j.1095-8339.1971.tb02142.x
  49. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. https://doi.org/10.1093/molbev/mst197
  50. Tanabe, A.S. (2011) Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional, and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources 11: 914–921. https://doi.org/10.1111/j.1755-0998.2011.03021.x
  51. Tavaré, S. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17: 57–86.
  52. Tateishi, Y. (2006a) 5. Laportea Gaudich. In: Iwatsuki, K., Boufford, D.E. & Ohba, H. (Eds.) Flora of Japan IIa. Kodansha, Tokyo, pp. 81–82.
  53. Tateishi, Y. (2006b) 5. Nanocnide Blume. In: Iwatsuki, K., Boufford, D.E. & Ohba, H. (Eds.) Flora of Japan IIa. Kodansha, Tokyo, pp. 89–90.
  54. The Plant List. (2013) The Plant List Version 1.1. Available from: http://www.theplantlist.org/ (accessed on 23 April 2020)
  55. Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T.W., McNeill, J., Monro, A.M., Prado, J., Price, M.J. & Smith, G.F. (eds.) (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. https://doi.org/10.12705/Code.2018
  56. Weddell, H.A. (1869) Ordo CLXXXV. Urticaceae (1). In: de Candolle, A.P. (Ed.) Prodromus 16 sectio prior. Lahure C., Paris. pp. 32–235. https://doi.org/10.5962/bhl.title.286
  57. White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR protocols: A guide to method and applications. Academic Press, Sand Diego Calif. pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  58. Wu, Z.-Y., Monro, A.K., Milne, R.I., Wang, H., Yi, T.-S., Liu, J.& Li, D.-Z. (2013) Molecular phylogeny of the nettle family (Urticaceae) inferred from multiple loci of three genomes and extensive generic sampling. Molecular Phylogenetics and Evolution 69: 814–827. https://doi.org/10.1016/j.ympev.2013.06.022
  59. Xi, Z.-X., Liu, L. & Davis, C.C. (2016) The impact of missing data on species tree estimation. Molecular Biology and Evolution 33: 838–860. https://doi.org/10.1093/molbev/msv266
  60. Yang, X.-J., Baskin, J.M., Baskin, C.C. & Huang, Z.-Y. (2012) More than just a coating: Ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspectives in Plant Ecology, Evolution and Systematics 14: 434–442. https://doi.org/10.1016/j.ppees.2012.09.002
  61. Yang, Y.-P., Shih, B.-L. & Liu, H.-Y. (1996) 8. Urticaceae. In: Boufford, D.E., Hsieh, C.-F., Huang, T.-C., Ohashi, H., Yang, Y.-P., Lu, S.-Y. & Yang, S.-Y. (Eds.) Flora of Taiwan second edition 2. National Taiwan University, Taipei, pp. 197–257.