Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-07-28
Page range: 87-103
Abstract views: 189
PDF downloaded: 18

Molecular systematics of Jania species (Corallinales, Rhodophyta) from south-eastern Australia based on cox1 and psbA DNA sequence analyses

Universidade Federal de Santa Catarina; Centro de Ciências Biológicas; Departamento de Botânica; Florianópolis; SC 88040-900; Brazil
Universidade Federal de Santa Catarina; Centro de Ciências Biológicas; Departamento de Botânica; Florianópolis; SC 88040-900; Brazil
Universidade Federal de Santa Catarina; Centro de Ciências Biológicas; Departamento de Botânica; Florianópolis; SC 88040-900; Brazil
La Trobe University; Department of Environment and Genetics; Plenty Road; Bundoora; Vic. 3083; Australia
Universidade Federal do Rio de Janeiro; Instituto de Biodiversidade e Sustentabilidade - NUPEM; Macaé; RJ 27965-045; Brazil;Former address: The University of Adelaide; School of Biological Sciences; Adelaide SA 5000; Australia; State Herbarium of South Australia; Department for Environment and Water; SA Government; PO Box 2732; Kent Town; SA 5071; Australia; and SARDI Aquatic Sciences; Department of Primary Industries & Regions; SA Government; PO Box 120; Henley Beach SA 5022; Australia
Algae Australia Corallinales cox1 Jania psbA Rhodophyta seaweed species delimitation systematics

Abstract

Taxonomy of the calcified marine red macroalgal genus Jania (Corallinales, Rhodophyta) is traditionally built on the comparative analyses of vegetative and reproductive morpho-anatomical characters. However, Jania species often display high levels of morphological plasticity leading to frequent homoplasies. Cryptic speciation and the occurrence of overlapping diagnostic characters between some species often compromises species identification based on the type method. Molecular methods represent powerful tools to help test morphology-based classifications, delineate morphologically challenging species, and solve taxonomic quagmires. A recent morphology-based taxonomic study of the genus Jania, using the type-method and focusing on the south-eastern Australian flora, recognized five species and two varieties. To test this morphology-based assessment we performed dual-marker (cox1 and psbA) phylogenetic and species delineation analyses of selected south-eastern Australia Jania herbarium specimens. Our results confirmed the molecular distinction of Jania crassa, J. micrarthrodia, J. pedunculata, J. rosea, and J. sagittata in Australia. The highly polymorphic J. rosea represents a species-complex. A group of specimens identified as Jania rosea are Corallina berteroi, which represents another species-complex in the genus Corallina. Several potentially new species were also resolved. Molecular phylogenetic analyses of Jania species from other localities around Australia and the world, including type and topotype specimens, are called for. Also, the development of new primers and potentially new markers specifically designed to better amplify and sequence contemporary and historically significant Jania specimens deposited in herbaria are crucial to obtain greater phylogenetic support on deeper nodes and improved taxonomic certainty.

References

  1. Afonso-Carrillo, J., Pinedo, S. & Elejabeitia, Y. (1992) Notes on the benthic marine algae of the Canary Islands. Cryptogamie Algologie 13 (4): 281–290.
  2. Atmadja, W.S. & Prud’homme van Reine, W.F. (2010) Checklist of the seaweed species biodiversity of Indonesia with their distribution and classification: Rhodophyceae. Ceklis keanekaragaman jenis rumput laut di Indonesia dengan sebaran dan klasifikasinya merah (Rhodophyceae). Jakarta: Coral Reef Information and Training Centre. Coral Reef Rehabilitation and Management Programme. Indonesian Institute of Sciences (LIPI). Jakarta, Indonesia. pp. 72.
  3. Baba, M., Masaki, T. & Johansen, H.W. (1988) The segregation of three species of Corallina (Corallinales, Rhodophyta) based on morphology and seasonality in northern Japan. Botanica Marina 31: 15–22. https://doi.org/10.1515/botm.1988.31.1.15
  4. Berthelsen, A.K., Hewitt, J.E. & Taylor, R.B. (2015) Biological traits and taxonomic composition of invertebrate assemblages associated with coralline turf along an environmental gradient. Marine Ecology Progress Series 530: 15–27. https://doi.org/10.3354/meps11337
  5. Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F.K., Müller, N.F., Ogilvie, H.A., Du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M.A., Wu, C.H., Xie, D., Zhang, C., Stadler, T. & Drummond, A.J. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15: e1006650. https://doi.org/10.1371/journal.pcbi.1006650
  6. Broom, J.E.S., Hart, D.R., Farr, T.J., Nelson, W.A., Neill, K.F., Harvey, A.S. & Woelkerling, W.J. (2008) Utility of psbA and nSSU for phylogenetic reconstruction in the Corallinales based on New Zealand taxa. Molecular Phylogenetics & Evolution 46 (3): 958–73. https://doi.org/10.1016/j.ympev.2007.12.016
  7. Buys, S.S. & Gurgel, C.F.D. (1998) Ocorrência de Haliptilon roseum (Rhodophyta, Corallinales) no litoral brasileiro. Journal of the Department of Botany of the Federal University of Rio de Janeiro, Leandra 13: 1–6.
  8. Calderon, M.S., Bustamante, D.E., Gabrielson, P.W., Martone, P.T., Hind, K.R., Schipper, S.R. & Mansilla, A. (2021) Type specimen sequencing, multilocus analyses, and species delimitation methods recognize the cosmopolitan Corallina berteroi and establish the northern Japanese C. yendoi sp. nov. (Corallinaceae, Rhodophyta). Journal of Phycology 57 (5): 1659–1672. https://doi.org/10.1111/jpy.13202
  9. Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9 (10): 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  10. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9 (8): 772. https://doi.org/10.1038/nmeth.2109
  11. Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214. https://doi.org/10.1186/1471-2148-7-214
  12. Farr, T., Broom, J., Hart, D., Neill, K. & Nelson, W. (2009) Common coralline algae of northern New Zealand: An identification guide. NIWA Information Series 125.
  13. Fujisawa, T. & Barraclough, T.G. (2013) Delimiting species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Systematic Biology 62 (5): 707–724. https://doi.org/10.1093/sysbio/syt033
  14. Goldberg, N.A. & Kendrick, G.A. (2005) A catalogue of the marine macroalgae found in the western islands of the Recherche Archipelago (Western Australia, Australia), with notes on their distribution in relation to island location, depth, and exposure to wave energy. In: Balint, G., Antala, B., Carty, C., Mabieme, J.-M.A., Amar, I.B. & Kaplanova, A. (eds.) The Marine Flora and Fauna of Esperance, Western Australia. Western Australian Museum, pp. 25–89.
  15. Guiry, M.D. & Guiry, G.M. (2022) [continuously updated] AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: https://www.algaebase.org (accessed 27 July 2023)
  16. Gulbransen, D.J., Mcglathery, K.J., Marklund, M., Norris, J.N. & Gurgel, C.F.D. (2012) Gracilaria vermiculophylla (Rhodophyta, Gracilariales) in the Virginia coastal bays, USA: cox1 analysis reveals high genetic richness of an introduced macroalga. Journal of Phycology 48 (5): 1278–1283. https://doi.org/10.1111/j.1529-8817.2012.01218.x
  17. Harvey, A.S., Woelkerling, W.J. & De Reviers, B. (2020) A taxonomic analysis of Jania (Corallinaceae, Rhodophyta) in south-eastern Australia. Australian Systematic Botany 33 (3): 221–277. https://doi.org/10.1071/SB18064
  18. Hay, M.E. (1981) The Functional Morphology of Turf-Forming Seaweeds: Persistence in Stressful Marine Habitats. Ecology 62 (3): 739–750. https://doi.org/10.2307/1937742
  19. Higgins, D.G. & Sharp, P.M. (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73 (1): 237–244. https://doi.org/10.1016/0378-1119(88)90330-7
  20. Hind, K.R. & Saunders, G.W. (2013) A molecular phylogenetic study of the tribe Corallineae (Corallinales, Rhodophyta) with an assessment of genus‐level taxonomic features and descriptions of novel genera. Journal of Phycology 49 (1): 103–114. https://doi.org/10.1111/jpy.12019
  21. Hughey, J.R., Silva, P.C. & Hommersand, M.H. (2001) Solving taxonomic and nomenclatural problems in Pacific Gigartinaceae (Rhodophyta) using DNA from type material. Journal of phycology 37 (6): 1091–1109. https://doi.org/10.1046/j.1529-8817.2001.01048.x
  22. Johansen, H.W. & Silva, P.C. (1978) Janieae and Lithotricheae: two new tribes of articulated Corallinaceae (Rhodophyta). Phycologia 17 (4): 413–417. https://doi.org/10.2216/i0031-8884-17-4-413.1
  23. Johansen, H.W. & Womersley, H.B.S. (1986) Haliptilon roseum (Corallinaceae, Rhodophyta) in southern Australia. Australian Journal of Botany 34 (5): 551–567. https://doi.org/10.1071/BT9860551
  24. Johansen, H.W. & Womersley, H.B.S. (1994) Jania (Corallinales , Rhodophyta ) in Southern Australia. Australian Systematic Botany 7 (6): 605–625. https://doi.org/10.1071/SB9940605
  25. Johansen, H.W. (1981) Coralline algae, A first synthesis. CRC Publisher, Boca Raton. 699 pp.
  26. Joseph, V.R. & Vakayil, A. (2022) SPlit: An optimal method for data splitting. Technometrics 64 (2): 166–176. https://doi.org/10.1080/00401706.2021.1921037
  27. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A. & Valencia, A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 (12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  28. Kim, J.H., Guiry, M.D., Oak, J.H., Choi, D.S., Kang, S.H., Chung, H. & Choi, H.G. (2007) Phylogenetic relationships within the tribe Janieae (Corallinales, Rhodophyta) based on molecular and morphological data: A reappraisal of Jania. Journal of Phycology 43 (6): 1310–1319. https://doi.org/10.1111/j.1529-8817.2007.00410.x
  29. Kogame, K., Uwai, S., Anderson, R.J., Choi, H.G. & Bolton, J.J. (2017) DNA barcoding of South African geniculate coralline red algae (Corallinales, Rhodophyta). South African Journal of Botany 108: 337–341. https://doi.org/10.1016/j.sajb.2016.08.013
  30. Kützing, F.T. (1849) Species Algarum. Lipsiae [Leipzig]: F.A. Brockhaus. i–vi, 922 pp.
  31. Lamouroux, J.V.F. (1812) Extrait d’un mémoire sur la classification des Polypiers coralligènes non entièrement pierreux. Nouveaux Bulletin des Sciences, par la Société Philomathique de Paris 3: 181–188.
  32. Lindley, J. (1846) The vegetable kingdom or the structure, classification, and uses of plants illustrated upon the natural system...with upwards of five hundred illustrations. London. Published for the author by Bradbury & Evans.
  33. Lugilde, J., Bárbara, I. & Peña, V. (2019) Variabilidad morfológica de Jania longifurca (Corallinales, Rhodophyta) en Galicia (noroeste de España). Anales del Jardín Botánico de Madrid 76 (1): 1–9. https://doi.org/10.3989/ajbm.2512
  34. Mendoza-González, A.C., Mateo-Cid, L.E., García-López, D.Y. & Acosta-Calderón, J.A. (2014) Diversity and Distribution of articulated Coralline algae (Rhodophyta, Corallinales) of the Atlantic coast of Mexico. Phytotaxa 190 (1): 45–63. http://dx.doi.org/10.11646/phytotaxa.190.1.6
  35. Millar, A.J.K. & Kraft, G.T. (1993) Catalogue of marine and freshwater red algae (Rhodophyta) of New South Wales, including Lord Howe Island, south-western Pacific. Australian Systematic Botany 6 (1): 1–90. https://doi.org/10.1071/SB9930001
  36. Miller, K.A. (2012) Seaweeds of California. Updates of California Seaweed Species List. Berkeley: University of California Jepson Herbarium. pp. 1–59.
  37. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop, GCE 2010.
  38. Moreira, D. & Philippe, H. (2000) Molecular phylogeny: pitfalls and progress. International Microbiology 3 (1): 9–16.
  39. Nelson, W.A., Sutherland, J.E., Farr, T.J., Hart, D.R., Neill, K.F., Kim, H.J. & Yoon, H.S. (2015) Multi-gene phylogenetic analyses of New Zealand coralline algae: Corallinapetra novaezelandiae gen. et sp. nov. and recognition of the Hapalidiales ord. nov. Journal of Phycology 51 (3): 454–468. https://doi.org/10.1111/jpy.12288
  40. Papenfuss, G.F. (1964) Catalogue and bibliography of Antarctic and Sub-Antarctic benthic marine algae. In: Antarctic Research Series. Volume 1. Bibliography of the Antarctic Seas. (Lee, M.O. Eds). Washington D.C.: American Geophysical Union. pp. 1–76.
  41. Pardo, C., Peña, V., Barreiro, R. & Bárbara, I. (2015) A molecular and morphological study of Corallina sensu lato (Corallinales, Rhodophyta) in the Atlantic Iberian Peninsula. Cryptogamie Algologie 36 (1): 31–54. https://doi.org/10.7872/crya.v36.iss1.2015.31
  42. Postaire, B., Magalon, H., Bourmaud, C.A.F. & Bruggemann, J.H. (2016) Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa). Molecular Phylogenetics and Evolution 105: 36–49. https://doi.org/10.1016/j.ympev.2016.08.013
  43. Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21 (2): 609–620. https://doi.org/10.1111/1755-0998.13281
  44. Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G.J.M.E. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21 (8): 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
  45. R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/ (accessed 27 July 2023)
  46. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67 (5): 901–904. https://doi.org/10.1093/sysbio/syy032
  47. Saunders, G.W. (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society B: Biological Sciences 360 (1462): 1879–1888. https://doi.org/10.1098/rstb.2005.1719
  48. Silva, P.C., Basson, P.W. & Moe, R.L. (1996) Catalogue of the Benthic Marine Algae of the Indian Ocean. 79: [i]–xi. University of California Publications in Botany. 1259 pp.
  49. South, G.R. & Yen, S. (1992) Notes on the benthic marine algae of Nauru, Central Pacific. Micronesica 25 (1): 123–131.
  50. Stamatakis, A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 (9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  51. Swofford, D.L. (2008) PAUP (phylogenetic analysis using parsimony). In: Encyclopedia of Genetics, Genomics, Proteomics and Informatics. Sunderland, Massachusetts, pp. 1455–1455.
  52. Templeton, A.R., Crandall, K.A. & Sing, C.F. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132 (2): 619–633. https://doi.org/10.1093/genetics/132.2.619
  53. Twist, B.A., Neill, K.F., Bilewitch, J., Jeong, S.Y., Sutherland, J.E. & Nelson, W.A. (2019) High diversity of coralline algae in New Zealand revealed: Knowledge gaps and implications for future research. PLoS One 14 (12): 1–21. https://doi.org/10.1371/journal.pone.0225645
  54. Twist, B.A., Sutherland, J.E. & Nelson, W.A. (2018) Epiphytic Jania in New Zealand: Jania sphaeroramosa sp. nov. (Corallinales, Rhodophyta). Phytotaxa 357 (1): 30–40. https://doi.org/10.11646/phytotaxa.357.1.3
  55. Villesen, P. (2007) FaBox: an online toolbox for FASTA sequences. Molecular Ecology Notes 7 (6): 965–968. https://doi.org/10.1111/j.1471-8286.2007.01821.x
  56. Wallace, C.M.N., Silvia, E. & Guimaraes, P.B.M. (2003) Jania crassa Lamouroux (Rhodophyta, Corallinales), nome correto para as referencias de Jania rubens Lamouroux no Brasil. Hoehnea 30: 111–120.
  57. Woelkerling, W.J., Harvey, A.S. & de Reviers, B. (2015a) Jania verrucosa and Jania crassa (Rhodophyta: Corallinaceae): Typification, nomenclature and taxonomic implications. Taxon 64: 137–46.
  58. Woelkerling, W.J., Harvey, A.S. & de Reviers, B. (2015b) Jania pedunculata (Rhodophyta: Corallinaceae): Typification, nomenclature, and taxonomic status relative to J. Crassa, and J. verrucosa sensu Johansen & Womersley, and J. ungulata. Taxon 64 (1): 1280–93. https://doi.org/10.12705/641.1
  59. Woelkerling, W.J. & Nelson, W.A. (2004) A baseline summary and analysis of the taxonomic biodiversity of coralline red algae (Corallinales, Rhodophyta) recorded from the New Zealand region. Cryptogamie Algologie 25 (1): 39–106.
  60. Woelkerling, W.J., Harvey, A.S. & de Reviers, B. (2015a) Jania verrucosa and Jania crassa (Rhodophyta: Corallinaceae): Typification, nomenclature and taxonomic implications. Taxon 64: 137–46.
  61. Woelkerling, W.J., Harvey, A.S. & de Reviers, B. (2015b) Jania pedunculata (Rhodophyta: Corallinaceae): Typification, nomenclature, and taxonomic status relative to J. Crassa, and J. verrucosa sensu Johansen & Womersley, and J. ungulata. Taxon 64 (1): 1280–93. https://doi.org/10.12705/641.1
  62. Womersley, H.B.S. (1996) The Marine Benthic Flora of Southern Australia, Rhodophyta—Part IIIB. Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Australian Biological Resources Study. 392 pp.
  63. Xia, B., Wang, Y., Zhou, J. & Zhang, D. (2013) Flora Algarum Marinarum Sinicarum (Tomus II) Rhodophyta (No. III) Gelidiales Cryptonemiales Hildenbrandiales. China Scientific Book Services: The Best Professional China Books. Science Press:, Beijing, China. 203 pp.
  64. Yendo, K. (1905) A revised list of Corallinae. Journal of the College of Science, Imperial University of Tokyo 20: 1–46.
  65. Yoon, H.S., Hackett, J.D. & Bhattacharya, D. (2002) A single origin of the peridinin-and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proceedings of the National Academy of Sciences 99 (18): 11724–11729. https://doi.org/10.1073/pnas.172234799
  66. Zanardini, G. (1844) Rivista critica delle Corallinee (o Polypai calciferi di Lamouroux). Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti 3: 186–188.
  67. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29 (22): 2869–76. https://doi.org/10.1093/bioinformatics/btt499