Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-04-01
Page range: 24-34
Abstract views: 50
PDF downloaded: 72

Tricholoma colposii (Tricholomataceae, Basidiomycota), a new edible species of matsutake fungi from Eastern Mexico with economic and biocultural importance

Colegio de Postgraduados, Campus Montecillo, Edafología, Texcoco, México
Colegio de Postgraduados, Campus Montecillo, Edafología, Texcoco, México
Colegio de Postgraduados, Campus Montecillo, Edafología, Texcoco, México
Universidad Autónoma Chapingo, Instituto de Horticultura del Departamento de Fitotecnia, Carr. Federal México-Texcoco Km 38.5, 56230 Texcoco, México
Colegio de Postgraduados, Campus Montecillo, Edafología, Texcoco, México
Colegio de Postgraduados, Campus Montecillo, Edafología, Texcoco, México; Universidad Intercultural del Estado de México, plantel Tepetlixpa, Tepetlixpa, México
Colegio de Postgraduados, Campus Montecillo, Edafología, Texcoco, México
biocultural importance ectomycorrhizae edible wild mushrooms matsutake fungus Tricholomataceae Fungi

Abstract

Matsutake fungi include a complex of edible mushrooms highly prized worldwide, particularly in Japan where they are considered one of the most luxurious ingredients. These species establish ectomycorrhizal symbioses with angiosperms and gymnosperms in the Northern Hemisphere and in North America only three species are currently known. In the present contribution a fourth species of this geographical area is described, Tricholoma colposii sp. nov. is described from Veracruz state, in eastern Mexico based on morphological and molecular (nrITS) data. This species is characterized by middle size basidiomata, with orange brown to brown pileus and stipe, squamose when young and with appressed scales in maturity, cylindric, fibrillous to scaly stipe, with globose to ellipsoid (4.5–)5–6 (–7) × (3–) 4–5 (–6) μm smooth spores, sporomes with sweet fruit odor and raw green bean flavour. The species grows associated with Pinus teocote forests. The macro- and micromorphological characters in conjunction with the nrITS-based phylogenetic analysis using Maximum Likelihood method and Bayesian inference support the proposal of this new species of Mexican matsutake. Detailed descriptions, photographs and comparisons with phenetic and phylogenetic related species are presented.

References

<p>Benazza-Bouregba, M., Savoie, J.M., Fortas, Z. &amp; Billette, C. (2016) A new record of <em>Tricholoma caligatum</em> (Tricholomataceae) from North Africa with a discussion of related species. <em>Phytotaxa </em>282: 119–128. https://dx.doi.org/10.11646/phytotaxa.282.2.3</p>
<p>Bergius, N. &amp; Danell, E. (2000) The Swedish matsutake (<em>Tricholoma nauseosum</em> syn. <em>T. matsutake</em>): Distribution, Abundance and Ecology. <em>Scandinavian Journal of Forest Research </em>15: 318−325.&nbsp; https://dx.doi.org/10.1080/028275800447940</p>
<p>Binder, M., Hibbett, D.S., Wang, Z. &amp; Farnham, W. (2006) Evolutionary relationships of <em>Mycaureola dilseae</em> (<em>Agaricales</em>), a basidiomycete pathogen of a subtidal rhodophyte. <em>American Journal of Botany</em> 93: 547–556.&nbsp; https://dx.doi.org/10.3732/ajb.93.4.547</p>
<p>Bon, M. (1991) <em>Flore mycologique d’Europe.</em> 2. Les tricholomes et ressemblants. <em>Tricholomataceae</em> (Fayod) Heim (1ère partie). Doc Mycol, Mémoire hors série no 2. Edité par l’association d’écologie et mycologie, Lille.</p>
<p>Christensen, M. &amp; Heilmann-Clausen, J. (2012) <em>Tricholoma</em> (Fr.) P. Kumm. <em>In</em>: Vesterholt, J. &amp; Knudsen, H. (Eds.) <em>Funga Nordica</em>. 2nd edn. Nordsvamp, Copenhagen, Denmark. pp. 494–510.</p>
<p>Christensen, M. &amp; Heilmann-Clausen, J. (2013) The genus <em>Tricholoma</em>. <em>In:</em> <em>Fungi of Northern Europe</em>, vol. 4. Svampetryk, Denmark.</p>
<p>Doðan, H.H. &amp; Akata, I. (2011) Ecological features of <em>Tricholoma anatolicum</em> in Turkey. <em>African Journal of Biotechnology</em> 10<em>: </em>12626−12638.&nbsp; https://dx.doi.org/10.5897/AJB11.1001</p>
<p>Frandsen, P.B., Calcott, B., Mayer, C. &amp; Lanfear, R. (2015) Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates. <em>BMC Evolutionary Biology</em> 15: 1−17.&nbsp; https://doi.org/10.1186/s12862-015-0283-7</p>
<p>Fries, E. (1821) <em>Systema Mycologicum</em>. Lundoe, Sweden. 520 pp.</p>
<p>Garnica, S., Weiss, M., Walther, G. &amp; Oberwinkler, F. (2007) Reconstructing the evolution of agarics from nuclear gene sequences and basidiospore ultrastructure. <em>Mycological Research</em> 111: 1019–1029.&nbsp; https://dx.doi.org/10.1016/j.mycres.2007.03.019</p>
<p>Gernandt, D.S. &amp; Pérez-de la Rosa, J.A. (2014) Biodiversidad de Pinophyta (coníferas) en México. <em>Revista Mexicana de Biodiversidad 85:</em> 126−133.&nbsp; https://doi.org/10.7550/rmb.32195</p>
<p>Heilmann-Clausen, J., Christensen, M., Froslev, T.G. &amp; Kjoller, R. (2017)&nbsp;Taxonomy of <em>Tricholoma</em> in northern Europe based on ITS sequence data and morphological characters.&nbsp;<em>Persoonia</em>&nbsp;38: 38–57.&nbsp; https://dx.doi.org/10.3767/003158517X693174</p>
<p>Hofstetter, V., Clémençon, H., Vilgalys, R. &amp; Moncalvo, J. (2002) Phylogenetic analyses of the <em>Lyophylleae</em> (<em>Agaricales</em>, <em>Basidiomycota</em>) based on nuclear and mitochondrial rDNA. <em>Mycological Research</em> 106: 1043–1059.&nbsp; https://dx.doi.org/10.1017/S095375620200641X</p>
<p>Intini, M., Dogan, H.H. &amp; Riva, A. (2003) <em>Tricholoma anatolicum</em> spec. nov.: un nuovo membro del gruppo matsutake. <em>Micologia e Vegetazione Mediterranea</em> 18: 135–142.</p>
<p>Huelsenbeck, J.P. &amp; Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. <em>Bioinformatics</em> 17: 754−755.&nbsp; https://doi.org/10.1093/bioinformatics/17.8.754</p>
<p>Katoh, K. &amp; Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. <em>Molecular Biology and Evolution</em> 30: 772−780.&nbsp; https://doi.org/10.1093/molbev/mst010</p>
<p>Katoh, K., Misawa, K., Kuma, K. &amp; Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. <em>Nucleic Acids Research</em> 30: 3059–3066.&nbsp; https://doi.org/10.1093/nar/gkf436</p>
<p>Katoh, K., Rozewicki, J. &amp; Yamada, K.D. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. <em>Briefings in Bioinformatics</em> 20: 1160−1166.&nbsp; https://doi.org/10.1093/bib/bbx108</p>
<p>Kikuchi, K., Matsushita, N., Guerin-Laguette, A., Ohta, A. &amp; Suzuki, K. (2000) Detection of <em>Tricholoma matsutake</em> by specific ITS primers. <em>Mycological Research</em> 104: 1427–1430.</p>
<p>Kytövuori, I. (1989) The <em>Tricholoma caligatum</em> group in Europe and North Africa. <em>Karstenia</em> 28: 65–77.&nbsp; https://doi.org/10.29203/ka.1988.266</p>
<p>Lanfear, R., Calcott, B., Kainer, D., Mayer, C. &amp; Stamatakis, A. (2014) Selecting optimal partitioning schemes for phylogenomic datasets. <em>BMC Evolutionary Biology</em> 14: 1−14.&nbsp; https://doi.org/10.1186/1471-2148-14-82</p>
<p>Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. &amp; Calcott, B. (2017) Partition Finder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. <em>Molecular Biology and Evolution</em> 34: 772−773.&nbsp; https://doi.org/10.1093/molbev/msw260</p>
<p>Lodge, D.J., Ammirati, J.F., Dell, T.O. &amp; Mueller, G.M. (2004) Terrestrial and Lignicolous Macrofungi: Colecting and describing macrofungi. <em>In</em>: Mueller, G., Bills, G.F. &amp; Foster, M.S. (Eds.) <em>Biodiversity of Fungi</em>. Inventary and Monitoring Methods. Elsevier Academic Press pp. 128–158.</p>
<p>Lodge, D.J., Padamsee, M., Matheny, P.B., Aime, M.C., Cantrell, S.A., Boertmann, D., Kovalenko, A., Vizzini, A., Dentinger, B.T.M., Kirk, P.M., Ainsworth, A.M., Moncalvo, J.-M., Vilgalys, R., Larsson, E., Lücking, R., Griffith, G.W., Smith, M.E., Norvell, L.L., Desjardin, D.E., Redhead, S.A., Ovrebo, C.L., Lickey, E.B., Ercole, E., Hughes, K.W., Courtecuisse, R., Young, A., Binder, M., Minnis, A.M., Lindner, D.L., Ortiz-Santana, B., Haight, J., Læssøe, T., Baroni, T.J., Geml, J. &amp; Hattori, T. (2014) Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales). <em>Fungal Diversity</em> 64: 1–99.&nbsp; https://dx.doi.org/10.1007/s13225-013-12559-0</p>
<p>Martínez-González, C.R., Ramírez-Mendoza, R., Jiménez-Ramírez, J., Gallegos-Vázquez, C. &amp; Luna-Vega, I. (2017) Improved method for genomic DNA extraction for <em>Opuntia</em> Mill. (Cactaceae). <em>Plant Methods</em> 13: 1−10.&nbsp; https://doi.org/10.1186/s13007-017-0234-y</p>
<p>Matheny, P.B., Curtis, J.M., Hofstetter, V., Aime, M.C., Moncalvo, J.-M., Ge, Z.-W., Slot, J.C., Ammirati, J.F., Baroni, T.J., Bougher, N.L., Hughes, K.W., Lodge, D.J., Kerrigan, R.W., Seidl, M.T., Aanen, D.K., DeNitis, M., Daniele, G.M., Desjardin, D.E., Kropp, B.R., Norvell, L.L., Parker, A., Vellinga, E.C., Vilgalys, R. &amp; Hibbett, D.S. (2006) Major clades of Agaricales: A multilocus phylogenetic overview. <em>Mycologia</em> 98: 982–995.&nbsp; https://dx.doi.org/10.3852/mycologia.98.6.982</p>
<p>Moncalvo, J.M., Lutzoni, F.M., Rehner, S.A., Johnson, J. &amp; Vilgalys, R. (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. <em>Systematic Biology</em> 49: 278–305.&nbsp; https://dx.doi.org/10.1093/sysbio/49.2.278</p>
<p>Moncalvo, J.-M., Vilgalys, R., Redhead, S.A, Johnson, J.E., James, T.Y., Catherine Aime, M., Hofstetter, V., Verduin, S.J.W., Larsson, E., Baroni, T.J., Greg Thorn, R., Jacobsson, S., Clémençon, H. &amp; Miller, O.K. (2002) One hundred and seventeen clades of euagarics. <em>Molecular Phylogenetics and Evolution</em> 23: 357–400.&nbsp; https://dx.doi.org/10.1016/S1055-7903(02)00027-1</p>
<p>Müller, K., Quandt, D., Müller, J. &amp; Neinhuis, C. (2005) PhyDE®-Phylogenetic data editor. Program distributed by the authors, versión 10.0. Available from: https://www.phyde.de (accessed 16 February 2022).</p>
<p>Murata, H., Ota, Y., Yamaguchi, M., Yamada, A., Katahata, S., Otsuka, Y., Babasaki, K. &amp; Neda, H. (2013) Mobile DNA distributions refine the phylogeny of “matsutake” mushrooms, <em>Tricholoma</em> sect. <em>Caligata</em>. <em>Mycorrhiza</em> 23<em>:</em> 447–461.&nbsp; https://doi.org/10.1007/s00572-013-0487-x</p>
<p>Pérez-Moreno, J., Guerin-Laguette, A., Rinaldi, A.C., Yu, F., Verbeken, A., Hernández-Santiago, F. &amp; Martínez-Reyes, M. (2021b) Edible mycorrhizal fungi of the world: What is their role in forest sustainability, food security, biocultural conservation and climate change?&nbsp;<em>Plants People Planet</em>.&nbsp;3<em>:</em> 471−490.&nbsp; https://doi.org/10.1002/ppp3.10199</p>
<p>Pérez-Moreno, J., Martínez-Reyes, M., Yescas-Pérez, A., Delgado-Alvarado, A. &amp; Xoconostle-Cázares, B. (2008) Wild mushroom markets in Central Mexico and a case study at Ozumba. <em>Economic Botany</em> 62: 425–436.&nbsp; https://doi.org/10.1007/s12231-008-9043-6</p>
<p>Pérez-Moreno, J., Mortimer, P.E., Xu, J., Karunarathna, S.C. &amp; Li, H. (2021a) Global perspectives on the ecological, cultural, and socioeconomic relevance of wild edible fungi. <em>Studies in Fungi</em> 6: 408–424.&nbsp; https://doi.org/10.5943/sif/6/1/31</p>
<p>Rambaut, A., Suchard, M.A., Xie, D. &amp; Drummond, A.J. (2014) <em>Tracer v1.6.</em> Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 16 February 2022).</p>
<p>Ryberg, M. &amp; Matheny, P.B. (2011) Asynchronous origins of ectomycorrhizal clades of Agaricales. <em>Proceedings of the Royal Society B</em> 279: 2013–2011.&nbsp; https://doi.org/10.1098/rspb.2011.2428</p>
<p>Sánchez-García, M., Matheny, P.B., Palfner, G. &amp; Lodge, D.J. (2014) Deconstructing the <em>Tricholomataceae</em> (<em>Agaricales</em>) and introduction of the new genera <em>Albomagister</em>, <em>Corneriella</em>, <em>Pogonoloma</em> and <em>Pseudotricholoma</em>. <em>Taxon</em> 63: 993−1007.&nbsp; https://doi.org/10.12705/635.635.3</p>
<p>Sandor, S.R., Wang, H., Vaario, L., Trudell, S.A. &amp; Xu, J. (2020) Mitochondrial multilocus DNA sequence analyses reveal limited genetic variability within and consistent differences between species of the global <em>matsutake</em> species complex. <em>Acta Edulis Fungi </em>27: 1–19.</p>
<p>Sanmee R, Dell B, Lumyong P &amp; Lumyong S (2007) First record of <em>Tricholoma fulvocastaneum</em> from Thailand. <em>Mycoscience</em> 48: 131–133.&nbsp; https://doi.org/10.1007/s10267-006-0341-5</p>
<p>Singer, R. (1986) <em>The Agaricales in modern taxonomy</em>. Königstein: Koeltz Scientific Books, 981 pp.</p>
<p>Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. <em>Bioinformatics</em> 30: 1312−1313.&nbsp; https://doi.org/10.1093/bioinformatics/btu033</p>
<p>Staude, F. (1857) Die Schwämme Mitteldeutschlands, in besondere des Herzogthums. Coburg, Germany, 150 pp.</p>
<p>Tedersoo, L., May, T.W. &amp; Smith, M.E. (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. <em>Mycorrhiza</em> 20: 217–263.</p>
<p>Trudell, S.A., Xu, J., Saar, I., Justo, A. &amp; Cifuentes, J. (2017) North American matsutake: names clarified and a new species described. <em>Mycologia</em> 109: 379−390.&nbsp; https://doi.org/10.1080/00275514.2017.1326780</p>
<p>Valencia, A.S. (2004) Diversidad del género <em>Quercus</em> (Fagaceae) en México. <em>Boletín de la Sociedad Botánica de México</em> 75: 33−53.&nbsp; https://dx.doi.org/10.17129/botsci.1692</p>
<p>Villarreal, L. &amp; Pérez-Moreno, J. (1989) Aprovechamiento y conservación del matsutake americano (<em>Tricholoma magnivelare</em>) en los bosques de México. <em>Micología Neotropical Aplicada</em> 2: 131−144.</p>
<p>Wang, Y<strong>.</strong>, Yu FQ<strong>.</strong>, Zhang, CX &amp; Li SH<strong>. (</strong>2017<strong>) </strong><em>Tricholoma matsutake</em><strong>: </strong>an edible mycorrhizal mushroom of high socioeconomic relevance in China<strong>. </strong><em>Scientia Fungorum</em> 46<strong>: </strong>55−61</p>
<p>White, T.J., Bruns, T.D., Lee, S.B. &amp; Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. <em>In</em>: <em>Protocols and Applications - A Laboratory Manual.</em> Publisher: Academic Press. pp. 315−322.</p>
<p>Zhang, S., Bai, X., Ren LY., Sun HH., Tang HT., Vaario LM., Xu, J. &amp; Zhang YJ. (2021) Dynamic evolution of eukaryotic mitochondrial and nuclear genomes: a case study in the gourmet pine mushroom <em>Tricholoma matsutake</em>. <em>Environmental Microbiology</em> 23: 7214–7230.</p>
<p>Zhang, Z., Schwartz, S., Wagner, L. &amp; Miller, W. (2000) A greedy algorithm for aligning DNA sequences. <em>Journal of Computational Biology</em> 7: 203−214.</p>