Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-03-25
Page range: 129-140
Abstract views: 91
PDF downloaded: 1

Comparative study and genetic diversity of Salicornia persica (Chenopodiaceae) using SCOT molecular markers

Northeast Electric Power University, School of Physical Education, Jilin Changchun, China
Faculty Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
gene flow genetic admixture genetic structure SCoT Eudicots

Abstract

Salicornia is a cosmopolitan genus having a high complicate taxonomy even described as a nightmare. Morphologically members of Salicornia are halophyte, annual, articulated, and succulent herbs with cortical palisade, opposite decussate scale-leaves, thyrsoid cymes, flowers packed in cauline depressions and the diaspore composed of l-seeded utricle. Salicornia is a priceless edible vegetable, considered as a favourable resource for cultivation in arid and semiarid coastal zones. Concerning the molecular data, although various studies were published, the situation is still quite obscure, at least for some taxa. Also, no DNA markers were used to analyses the genomic variability of the populations, up to date. In the present study, the genetic diversity of 102 individuals of S. persica (15 populations) were studied using 10 Start Codon Targeted (SCoT) markers. High polymorphic bands (94.18%), polymorphic information content (0.27), and allele number (1.38) showed SCoT as a reliable marker system for genetic analysis of this species. We used SCoT molecular marker for our genetic investigation with the following aims: 1) investigate genetic diversity both among and with date S. persica, 2) identify genetic groups within the 15 populations studied, and 3) produce data on the genetic structure of S. persica populations. The results obtained revealed a high within-population genetic variability.

References

<p>Akhani, H. (2003) <em>Salicornia persica </em>Akhani (Chenopodiaceae), a remarkable new species from Central Iran. <em>Linzer Bioligische. Beiträge</em> 35: 607–612.</p>
<p>Akhani, H. (2008) Taxonomic revision of the genus Salicornia L. (Chenopodiaceae) in Central and Southern Iran. <em>Pakistan Journal of Botany</em> 40 (4): 1635–1655.</p>
<p>Ball, P.W. (1964) A taxonomic review of <em>Salicornia </em>in Europe. <em>Feddes Repertorium</em> 69: 1–8.</p>
<p>Ball, P.W. &amp; Tutin, T.G. (1959) Notes on annual species of <em>Salicornia </em>in Britain. <em>Watsonia</em> 4: 193–205.</p>
<p>Ball, P.W. &amp; Akeroyd, J.R. (1993) <em>Salicornia</em> L. <em>In</em>: Tutin, T.G., Burgess, N.A., Chater, A.O., Edmondson, J.R., Heywood, V.H., Moore, D.M., Valentine, D.H., Walters, S.M. &amp; Webb, D.A. (Eds.) <em>Flora Europaea 2<sup>nd</sup> Ed.</em>, vol. 1. Cambridge University Press. Cambridge, pp. 121–123.</p>
<p>Bi, D., Dan, C., Khayatnezhad, M., Sayyah Hashjin, Z., Li, Z. &amp; Ma, Y. (2021) Molecular Identification And Genetic Diversity In Hypericum L.: A High Value Medicinal Plant Using Rapd Markers Markers. <em>Genetika </em>53 (1): 393–405.</p>
<p>Cheng, X., Hong, X., Khayatnezhad, M. &amp; Ullah, F. (2021) Genetic diversity and comparative study of genomic DNA extraction protocols in <em>Tamarix</em> L. species. <em>Caryologia </em>74 (2): 131–139.</p>
<p>Collard, B.C.Y. &amp; Mackill, D.J. (2009) Start codon targeted (SCoT) polymorphism: a simple novel DNA marker technique for generating gene-targeted markers in plants. <em>Plant Molecular Biology Reporter</em> 27: 86–93.</p>
<p>Dahlgren, G. (1980) Cytological and morphological investigation of the genus Erodium L’Hér. in the Aegean. <em>Botanica Notarisia</em> 133: 491–513.</p>
<p>Duval-Jouve, M.J. (1868) Des <em>Salicornia</em> de l’Herault. <em>Bulletin De la Société Botanique de France</em> 15: 165–178.</p>
<p>Esfandani-Bozchaloyi, S. &amp; Sheidai, M. (2018) Molecular diversity and genetic relationships among <em>Geranium pusillum </em>and <em>G. pyrenaicum </em>with inter simple sequence repeat (ISSR) regions. <em>International Journal of Cytology, Cytosystematics and Cytogenetics </em>71 (4): 1–14. https://doi.org/10.1080/00087114.2018.1503500</p>
<p>Esfandani-Bozchaloyi, S. &amp; Sheidai, M. (2019) Comparison Of Dna Extraction Methods From <em>Geranium </em>(Geraniaceae). <em>Acta Botanica Hungarica </em>61 (3–4): 251–266. https://doi.org/10.1556/034.61.2019.3-4.3</p>
<p>Esfandani Bozchaloyi, S., Sheidai, M., Keshavarzi, M. &amp; Noormohammadi, Z. (2017a) Genetic diversity and morphological variability in <em>Geranium purpureum </em>Vill. (Geraniaceae) Of Iran. <em>Genetika </em>49: 543–557. https://doi.org/10.2298/GENSR1702543B</p>
<p>Esfandani Bozchaloyi, S., Sheidai, M., Keshavarzi, M. &amp; Noormohammadi, Z. (2017b) Species delimitation in <em>Geranium </em>Sect. <em>Batrachioidea</em>: Morphological and molecular. <em>Acta Botanica Hungarica </em>59 (3–4): 319–334. https://doi.org/10.1556/034.59.2017.3-4.3</p>
<p>Esfandani Bozchaloyi, S., Sheidai, M., Keshavarzi, M. &amp; Noormohammadi, Z. (2017c) Genetic and morphological diversity in <em>Geranium dissectum </em>(Sec. Dissecta, Geraniaceae) populations. <em>Biologia </em>72 (10): 1121–1130. https://doi.org/10.1515/biolog-2017-0124</p>
<p>Esfandani Bozchaloyi, S., Sheidai, M., Keshavarzi, M. &amp; Noormohammadi, Z. (2017d) Analysis of genetic diversity in <em>Geranium robertianum </em>by ISSR markers. <em>Phytologia Balcanica </em>23 (2): 157–166.</p>
<p>Esfandani Bozchaloyi, S., Sheidai, M., Keshavarzi, M. &amp; Noormohammadi, Z. (2018a) Species Relationship and Population Structure Analysis In <em>Geranium </em>Subg. <em>Robertium </em>(Picard) Rouy with The Use of ISSR Molecular Markers. <em>Acta Botanica Hungarica </em>60 (1–2): 47–65. https://doi.org/10.1556/034.60.2018.1-2.4</p>
<p>Esfandani Bozchaloyi, S., Sheidai, M., Keshavarzi, M. &amp; Noormohammadi, Z. (2018b) Species identification and population structure analysis in <em>Geranium </em>Subg. <em>Geranium </em>(Geraniaceae). <em>Hacquetia </em>17 (2): 235–246. https://doi.org/10.1515/hacq-2017-0007</p>
<p>Esfandani Bozchaloyi, S., Sheidai, M., Keshavarzi, M. &amp; Noormohammadi, Z. (2018c) Morphometric and ISSR-analysis of local populations of <em>Geranium molle </em>L. from the southern coast of the Caspian Sea. <em>Cytology and Genetics </em>52 (4): 309–321. https://doi.org/10.3103/S0095452718040102</p>
<p>Evanno, G., Regnaut, S. &amp; Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. <em>Molecular Ecology </em>14: 2611–2620.</p>
<p>Freeland, J.R., Kirk, H. &amp; Peterson, S.D. (2011) <em>Molecular Ecology</em> 2<sup>nd</sup> ed. Wiley-Blackwell, UK, 449 pp. https://doi.org/10.1002/9780470979365</p>
<p>Freitag, H. (1989) Contributions to the chenopod flora of Egypt. <em>Flora </em>183&nbsp;: 149–173.</p>
<p>Guittonneau, G.G. (1972) Etude biosystematique du genre Erodium L’Hér. <em>Boissiera</em> 20: 1–154.</p>
<p>Gholamin, R. &amp; Khayatnezhad, M. (2020a) Assessment of the Correlation between Chlorophyll Content and Drought Resistance in Corn Cultivars (<em>Zea Mays</em>). <em>Helix</em> 10 (05): 93–97.</p>
<p>Gholamin, R. &amp; Khayatnezhad, M. (2020b) The effect of dry season stretch on Chlorophyll Content and RWC of Wheat Genotypes (<em>Triticum Durum</em> L.). <em>Bioscience Biotechnology Research Communications</em> 13 (4): 1833–1829.</p>
<p>Gholamin, R. &amp; Khayatnezhad, M. (2020c) Study of Bread Wheat Genotype Physiological and Biochemical Responses to Drought Stress. <em>Helix</em> 10 (5): 87–92.</p>
<p>Gohil, R.H &amp; Pandya, J.B. (2006) genetic divergence in salicornia (salicornia brachiata roxb.) <em>Indian Journal of Genetics and Plant Breeding</em> 66 (1): 75–76.</p>
<p>Guo, L.-N., She, C., Kong, D.-B., Yan, S.-L., Xu, P., Khayatnezhad, M. &amp; Gholinia, F. (2021) Prediction of the effects of climate change on hydroelectric generation, electricity demand, and emissions of greenhouse gases under climatic scenarios and optimized ANN model. <em>Energy Reports</em> 7: 5431¬5445.</p>
<p>Hammer, Ø. Harper, Dat. &amp; Ryan, P.D. (2012) PAST: Paleontological Statistics software package for education and data analysis<em>. Palaeontologia Electronica</em> 4: 1−9.</p>
<p>Hou, R., Li, S., Wu, M., Ren, G., Gao, W., Khayatnezhad, M. &amp; Gholinia, F. (2021) “Assessing of impact climate parameters on the gap between hydropower supply and electricity demand by RCPs scenarios and optimized ANN by the improved Pathfinder (IPF) algorithm.” <em>Energy</em> 237: 601¬621.</p>
<p>Huang, D., Wang, J. &amp; Khayatnezhad, M. (2021) Estimation of Actual Evapotranspiration Using Soil Moisture Balance and Remote Sensing. <em>Iranian Journal of Science and Technology, Transactions of Civil Engineering</em> 45: 2779–2786. https://doi.org/10.1007/s40996-020-00575-7</p>
<p>Hedrick, P.W. (2005) A standardized genetic differentiation measure. <em>Evolution</em> 59: 1633−1638.</p>
<p>Hoffman, A.A. &amp; Willi, Y. (2008) Detecting genetic responses to environmental change. <em>Nature Reviews Genetics</em> 9: 421–432.</p>
<p>Holderegger, R., Kamm, U. &amp; Gugerli, F. (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. <em>Landscape Ecology</em> 21: 797–807.</p>
<p>Jia, Y., Khayatnezhad, M. &amp; Mehri, S. (2020) Population differentiation and gene flow in Rrodium cicutarium: A potential medicinal plant. <em>Genetika </em>52 (3): 1127–1144.</p>
<p>Karasakal, A., Khayatnezhad, M. &amp; Gholamin, R. (2020a) The Durum Wheat Gene Sequence Response Assessment of Triticum durum for Dehydration Situations Utilizing Different Indicators of Water Deficiency. <em>Bioscience Biotechnology Research Communications</em> 13 (4): 2050–2057.</p>
<p>Karasakal, A., Khayatnezhad, M. &amp; Gholamin, R. (2020b) The Effect of Saline, Drought, and Presowing Salt Stress on Nitrate Reductase Activity in Varieties of Eleusine coracana (Gaertn). <em>Bioscience Biotechnology Research Communications</em> 13 (4): 2087–2091.</p>
<p>Kadereit, G., Ball, S., Beer, L., Mucina, D., Sokoloff, P., Teege, A.E. Freitag, H. (2007) A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (<em>Salicornia </em>L., Chenopodiaceae). <em>Taxon</em> 56: 1143−1170.</p>
<p>Khayatnezhad, M. &amp; Gholamin, R. (2020) Study of Durum Wheat Genotypes’ Response to Drought Stress Conditions. <em>Helix</em> 10 (05): 98¬103.</p>
<p>Khayatnezhad, M. &amp; Gholamin, R. (2021a) The Effect of Drought Stress on the Superoxide Dismutase and Chlorophyll Content in Durum Wheat Genotypes<em>. Advancements in Life Sciences </em>8 (2): 119–123.</p>
<p>Khayatnezhad, M. &amp; Gholamin, R. (2021b) Impacts of Drought Stress on Corn Cultivars (Zea mays L.) At the Germination Stage. <em>Bioscience Research</em> 18 (1): 409–414.</p>
<p>Knuth, P. (1908) <em>Handbook of flower pollination</em>, vol. 2. Oxford at the Clarendon Press, Oxford, 703 pp.</p>
<p>Kruger, A.M., Hellwig, F.H. &amp; Oberprieler, C. (2002) Genetic diversity in natural and antropogenic inland populations of salt-tolerant plants: random amplified polymorphic DNA analysis of <em>Aster tripolium </em>L. (Compositae) and <em>Salicornia ramosissima </em>Woods (Chenopodiaceae). <em>Molecular Ecology </em>11: 1647−1655.</p>
<p>Linnaeus, C. (1753) <em>Species Plantarum</em>, Vol. 1. Laurentii Salvii, Holmiae, 560 pp.</p>
<p>Ma, A., Ji, J. &amp; Khayatnezhad, M. (2021a) Risk-constrained non-probabilistic scheduling of coordinated power-to-gas conversion facility and natural gas storage in power and gas based energy systems. <em>Sustainable Energy, Grids and Networks </em>26: 100478. https://doi.org/10.1016/j.segan.2021.100478</p>
<p>Ma, S., Khayatnezhad, M. &amp; Minaeifar, A.A. (2021b) Genetic diversity and relationships among Hypericum L. species by ISSR Markers: A high value medicinal plant from Northern of Iran. <em>Caryologia</em> 74 (1): 97–107.</p>
<p>Moss, C.E. (1911) Some species of <em>Salicornia</em>. <em>Journal of Botany</em> <em>London </em>49: 177–185.</p>
<p>Minn, Y., Gailing, O. &amp; Finkeldey, R. (2015) Genetic di­versity and structure of teak (<em>Tectona grandis </em>L. f.) anddahat (<em>Tectona hamiltoniana </em>Wall.) based on chloroplast microsatellites and amplified fragment length polymor­phism markers. <em>Genetic Resources and Crop Evolution</em> 63: 961–974.</p>
<p>Noble, S.M., Davy, A.J. &amp; Oliver, R.M. (1992) Ribosomal DNA variation and population differentiation in <em>Salicornia </em>L. <em>New Phytologist </em>122: 553–565</p>
<p>Peakall, R. &amp; Smouse, P.E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. <em>Molecular Ecology Notes </em>6: 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x</p>
<p>Peng, X., Khayatnezhad, M.&amp; Ghezeljehmeidan, L. (2021) Rapd profiling in detecting genetic variation in stellaria l. (caryophyllaceae).<em> Genetika</em> 53 (1): 349¬362.</p>
<p>Podani, J. (2000) <em>Introduction to the Exploration of Multivariate Data English translation. </em>Backhuyes Publisher, Leide, 407 pp.</p>
<p>Pritchard, J.K., Stephens, M. &amp; Donnelly, P. (2000) Inference of population structure using multilocus genotype Data. <em>Genetics </em>155: 945–959.</p>
<p>Ren, J. &amp; Khayatnezhad, M. (2021) “Evaluating the stormwater management model to improve urban water allocation system in drought conditions. <em>Water Supply </em>21 (4): 1514–1524.</p>
<p>Sagane, Y., Sato, K. &amp; Momonoki, S. (2003) Identification of Salicornia Populations: Comparison between Morphological Characterization and RAPD Fingerprinting. <em>Plant Production Science</em> 4 (6): 287–294.</p>
<p>Si, X., Gao, L. Song, Y. Khayatnezhad, M. &amp; Minaeifar, A.A. (2020) Understanding population differentiation using geographical, morphological and genetic characterization in Erodium cicunium. <em>Indian Journal of Genetic </em>80 (4): 459–467.</p>
<p>Sun, X. &amp; Khayatnezhad, M. (2021) Fuzzy-probabilistic modeling the flood characteristics using bivariate frequency analysis and α-cut decomposition. <em>Water Supply</em> 21 (8): 4391–4403.</p>
<p>Sun, Q., Lin, D. Khayatnezhad, M. &amp; Taghavi, M. (2021) Investigation of phosphoric acid fuel cell, linear Fresnel solar reflector and Organic Rankine Cycle polygeneration energy system in different climatic conditions. <em>Process Safety and Environmental Protection</em> 147: 993¬1008.</p>
<p>Scott, A.J<strong>. (</strong>1977) Reinstatement and revision of Salicorniaceae J. Agardh. <em>Botanical Journal of Linnean Society </em>75: 357–374.</p>
<p>Steffen, S., Ball, P., Mucina, L.&amp; Kadereit, G. (2015) Phylogeny, biogeography and ecological diversification of <em>Sarcocornia</em> (Salicornioideae, Amaranthaceae). <em>Annals of Botany</em> 115: 353–368.</p>
<p>Wang, C., Shang, Y. &amp; Khayatnezhad, M. (2021) Fuzzy Stress-based Modeling for Probabilistic Irrigation Planning Using Copula-NSPSO. <em>Water Resources Management </em>35 (14): 4943–4959.</p>
<p>Warburg, E.F. (1938) Taxonomy and relationship in the Geraniales in the light of their cytology. <em>New Phytologist</em> 37: 189–210.</p>
<p>Webb, D.A. &amp; Chater, A.O. (1968) <em>Erodium</em> L’Hér. <em>In</em>: Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M. &amp; Webb, D.A. (eds.) <em>Flora Europaea</em>, vol. 2. Rosaceae to Umbelliferae, Cambridge at the University Press, Cambridge, pp. 199–204.</p>
<p>Weising, K., Nybom, H., Wolff, K. &amp; Kahl, G. (2005) <em>DNA Fingerprinting in Plants. Principles, Methods, and Applications</em>, 2<sup>nd</sup> ed. CRC Press, Boca Rayton, 472 pp. https://doi.org/10.1201/9781420040043</p>
<p>Yin, J., Khayatnezhad, M. &amp; Shakoor, A. (2021) Evaluation Of Genetic Diversity In Geranium (Geraniaceae) Using Rapd Marker. <em>Genetika</em> 53 (1): 363–378.</p>
<p>Zheng, R., Zhao, S. Khayyatnezhad, M. &amp; Afzal Shah, S. (2021) Comparative study and genetic diversity in Salvia (Lamiaceae) using RAPD Molecular Markers. <em>Caryologia</em> 74 (2): 45–56.</p>
<p>Zhu, K., Liu, L. Li, S. Li, B., Khayatnezhad, M. &amp; Shakoor, A. (2021) “Morphological method and molecular marker determine genetic diversity and population structure in Allochrusa. <em>Caryologia</em> 74 (2): 121–130.</p>