Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2018-08-07
Page range: 71–80
Abstract views: 37
PDF downloaded: 1

Plastid phylogenomic study of grape species and its implications for evolutionary study and conservation of Vitis

Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China
Beijing Museum of Natural History, Beijing 100050, P.R. China
Institute of Botany, Chinese Academy of Science, Beijing 100093, P. R. China
Institute of Botany, Chinese Academy of Science, Beijing 100093, P. R. China
College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
Eudicots Vitis phylogenomic complete chloroplast genome Vitis baihuashanensis endangered species China

Abstract

Because of rapid diversification and frequent interspecific gene flow within the genus and inappropriate molecular markers used for phylogenetic studies, phylogeny and evolution of the economically significant crop genus Vitis are poorly resolved and understood, and species delimitation of Vitis remain disputable. In order to better understand of relationships within Vitis, phylogenomic analysis of chloroplast genomes were performed based on extensive sampling scheme. Well resolved phylogenetic tree and clear divergence pattern of Vitis were obtained in the present study. The results shows that subg. Vitis was constituted by three strongly supported monophyletic clades whose species are distributed in North America, Europe and Asia, respectively. Nine molecular markers are provided as potential markers for DNA barcoding and phylogenetic study of Vitis. Furthermore, taxonomic position of the critically endangered species endemic to Northern China, V. baihuashanensis, is investigated and suggested to be a separate species based on phylogenomic analysis and morphological comparisons, and effective conservation actions is badly needed. Molecular resources reported in this study could also be used for genetic engineering studies of Vitis, and will potentially promote genomic exploration of crop wild relatives and conservation of the germplasm.

References

<p class="Reference">Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Son, P., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A. &amp; Pevzner, P.A. (2012) SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. <em>Journal of Computational Biology</em> 19: 455–477.</p><p class="Reference">         https://doi.org/10.1089/cmb.2012.0021</p><p class="Reference">Daniell, H., Lin, C., Yu, M. &amp; Chang, W. (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. <em>Genome Biology</em> 17: 134.</p><p class="Reference">         https://doi.org/10.1186/s13059-016-1004-2</p><p class="Reference">Diep, T., Olga, C., Arndt, von H., Bui, Q. &amp; Le, S. (2018) UFBoot2: improving the Ultrafast bootstrap approximation. <em>Molecular Biology and Evolution</em> 35 (2): 518–522.</p><p class="Reference">         https://doi.org/10.1093/molbev/msx281</p><p class="Reference">Dong, W., Liu, J., Yu, J., Wang, L. &amp; Zhou, S. (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. <em>PLoS One</em> 7: e35071.</p><p class="Reference">         https://doi.org/10.1371/journal.pone.0035071</p><p class="Reference">Ebert, D. &amp; Peakall, R. (2009) A new set of universal de novo sequencing primers for extensive coverage of noncoding chloroplast DNA: new opportunities for phylogenetic studies and cpSSR discovery. <em>Molecular Ecology Resources</em> 9: 777–783.</p><p class="Reference">         https://doi.org/10.1111/j.1755-0998.2008.02320.x</p><p class="Reference">Huang, D.I. &amp; Cronk, Q.C. (2015) Plann: A command-line application for annotating plastome sequences. <em>Applications in Plant Sciences</em> 3: 1500026.</p><p class="Reference">         https://doi.org/10.3732/apps.1500026</p><p class="Reference">Huotari, T. &amp; Korpelainen, H. (2013) Comparative analyses of plastid sequences between native and introduced populations of aquatic weeds <em>Elodea canadensis</em> and <em>E. nuttallii</em>. <em>PLoS One</em> 8: e580734.</p><p class="Reference">         https://doi.org/10.1371/journal.pone.0058073</p><p class="Reference">Imazio, S., Maghradze, D., De Lorenzis, G., Bacilieri, R., Laucou, V., This, P., Scienza, A. &amp; Failla, O. (2013) From the cradle of grapevine domestication: molecular overview and description of Georgian grapevine (<em>Vitis vinifera</em> L.) germplasm. <em>Tree Genetics &amp; Genomes</em> 9: 641–658.</p><p class="Reference">         https://doi.org/10.1007/s11295-013-0597-9</p><p class="Reference">IUCN (2012) IUCN Red List Categories and Criteria: Version 3.1. Second edition. IUCN, Gland, Switzerland and Cambridge, UK.</p><p class="Reference">Jaillon, O., Aury, J., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyere, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pe, M.E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A., Weissenbach, J., Quetier, F. &amp; Wincker, P. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. <em>Nature</em> 449: 463–467.</p><p class="Reference">         https://doi.org/10.1038/nature06148</p><p class="Reference">Kang, M.S. &amp; Lu, D.Z. (1993) A new species of <em>Vitis</em> from Beijing. <em>Acta Phytotaxonomica Sinica</em> 31: 70–71.</p><p class="Reference">Katoh, K., Rozewicki, J. &amp; Yamada, K.D. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. <em>Briefings in Bioinformatics</em>. (in press)</p><p class="Reference">         https://doi.org/10.1093/bib/bbx108</p><p class="Reference">Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. &amp; Drummond, A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. <em>Bioinformatics</em> 28: 1647–1649.</p><p class="Reference">         https://doi.org/10.1093/bioinformatics/bts199</p><p class="Reference">Klein, L.L., Miller, A.J., Ciotir, C., Hyma, K., Uribe-Convers, S. &amp; Londo, J. (2018) High-throughput sequencing data clarify evolutionary relationships among North American <em>Vitis</em> species and improve identification in USDA <em>Vitis</em> germplasm collections. <em>American Journal of Botany</em> 105: 215–226.</p><p class="Reference">         https://doi.org/10.1002/ajb2.1033</p><p class="Reference">Kumar, S., Stecher, G. &amp; Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. <em>Molecular Biology and Evolution</em> 33: 1870–1874.</p><p class="Reference">         https://doi.org/10.1093/molbev/msw054</p><p class="Reference">Lam-Tung, N., Heiko, A.S., Arndt, von H. &amp; Bui, Q.M. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. <em>Molecular Biology and Evolution</em> 32 (1): 268–274.</p><p class="Reference">         https://doi.org/10.1093/molbev/msu300</p><p class="Reference">Linnaeus, C. von (1753) <em>Species Plantarum </em>2. Impensis Laurentii Salvii, Holmiae [Stockholm], 202 pp.</p><p class="Reference">Li, C.L., Cao, Y.L. &amp; He, Y.H. (1996) A taxonomical study on <em>Vitis</em> L. in China. <em>Chinese Journal of Applied and Environmental Biology</em> 2 (3):234–253.</p><p class="Reference">Li, C.L. (1998) <em>Vitis</em>. <em>In</em>: Editorial Committee of Flora Sinicae (Org.) <em>Flora Reipublicae Popularis Sinicae </em>vol. 48 (2). Science Press, Beijing, pp. 136–178.</p><p class="Reference">Li, J.L., Wang, S., Yu, J., Wang, L. &amp; Zhou, S.L. (2013) A modified CTAB protocol for plant DNA extraction. <em>Chinese Bulletin of Botany</em> 48: 72–78.</p><p class="Reference">         https://doi.org/10.3724/SP.J.1259.2013.00072</p><p class="Reference">Liu, X.Q., Ickert-Bond, S.M., Nie, Z.L., Zhou, Z., Chen, L.Q. &amp; Wen, J. (2016) Phylogeny of the <em>Ampelocissus-Vitis</em> clade in Vitaceae supports the New World origin of the grape genus. <em>Molecular Phylogenetics and Evolution</em> 95: 217–228.</p><p class="Reference">         https://doi.org/10.1016/j.ympev.2015.10.013</p><p class="Reference">Logacheva, M.D., Penin, A.A., Valiejo-Roman, C.M. &amp; Antonov, A.S. (2009) Structure and evolution of junctions between inverted repeat and small single copy regions of chloroplast genome in non-core Caryophyllales. <em>Molecular Biology</em> 43: 757–765.</p><p class="Reference">         https://doi.org/10.1134/S0026893309050070</p><p class="Reference">Logacheva, M.D., Samigullin, T.H., Dhingra, A. &amp; Penin, A.A. (2008) Comparative chloroplast genomics and phylogenetics of <em>Fagopyrum esculentum</em> ssp. <em>ancestrale</em> - A wild ancestor of cultivated buckwheat. <em>BMC Plant Biology:</em> 8.</p><p class="Reference">         https://doi.org/10.1186/1471-2229-8-59</p><p class="Reference">Lohse, M., Drechsel, O., Kahlau, S. &amp; Bock, R. (2013) OrganellarGenomeDRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. <em>Nucleic Acids Research</em> 41: W575–W581.</p><p class="Reference">         https://doi.org/10.1093/nar/gkt289</p><p class="Reference">Lu, D.Z. &amp; Liang, H.P. (1994) A study on <em>Vitis</em> in Beijing. <em>Journal of Beijing Agricultural College</em> 9: 78–81.</p><p class="Reference">Ma, Z., Wen, J., Ickert-Bond, S.M., Chen, L. &amp; Liu, X. (2016) Morphology, Structure, and Ontogeny of Trichomes of the Grape Genus (<em>Vitis</em>, Vitaceae). <em>Frontiers in Plant Science</em> 7: 704.</p><p class="Reference">         https://doi.org/10.3389/fpls.2016.00704</p><p class="Reference">Magallon, S. &amp; Castillo, A. (2009) Angiosperm diversification through time. <em>American Journal of Botany</em> 96: 349–365.</p><p class="Reference">         https://doi.org/10.3732/ajb.0800060</p><p class="Reference">McGovern, P.E. (2003) <em>Ancient Wine: The Search for the Origins of Viniculture</em>. Princeton University Press, Princeton.</p><p class="Reference">Myles, S., Boyko, A.R., Owens, C.L., Brown, P.J., Grassi, F., Aradhya, M.K., Prins, B., Reynolds, A., Chia, J., Ware, D., Bustamante, C.D. &amp; Buckler, E.S. (2011) Genetic structure and domestication history of the grape. <em>Proceedings of the National Academy of Science, USA</em> 108: 3530–3535.</p><p class="Reference">         https://doi.org/10.1073/pnas.1009363108</p><p class="Reference">Nie, Z.L., Sun, H., Manchester, S.R., Meng, Y., Luke, Q. &amp; Wen, J. (2012) Evolution of the intercontinental disjunctions in six continents in the <em>Ampelopsis</em> clade of the grape family (Vitaceae). <em>BMC Evolutionary Biology</em> 12: 17.</p><p class="Reference">         https://doi.org/10.1186/1471-2148-12-17</p><p class="Reference">Ren, H. &amp; Wen, J. (2007) <em>Vitis</em>. <em>In</em>: Wu, C.Y., Hong, D.Y. &amp; Raven, P.H. (Eds.) <em>Flora of China</em>. Science Press &amp; Missouri Botanical Garden Press, Beijing &amp; St. Louis, pp. 173–222.</p><p class="Reference">Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. &amp; Sánchez-Gracia, A. (2017) DnaSP 6: DNA sequence polymorphism analysis of large datasets. <em>Molecular Biology and Evolution.</em> (in press)</p><p class="Reference">         https://doi.org/10.1093/molbev/msx248</p><p class="Reference">Ruprecht, F.J. (1857) Die Ersten Botanichen Nachrichten Uber uas Amurland. <em>Bulletin de la Class Physico-Mathematique de l’Academie Imperiale des Sciences de Saint-Pétersbourg. St. Petersburg</em> 15: 266.</p><p class="Reference">Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W.S., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E. &amp; Small, R.L. (2005) The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. <em>American Journal of Botany</em> 92: 142–166.</p><p class="Reference">         https://doi.org/10.3732/ajb.92.1.142</p><p class="Reference">Shaw, J., Lickey, E.B., Schilling, E.E. &amp; Small, R.L. (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. <em>American Journal of Botany</em> 94: 275–288.</p><p class="Reference">         https://doi.org/10.3732/ajb.94.3.275</p><p class="Reference">Skvortzow, B.W. (1925) Notes on trees and shrubs of Northern Manchuria. <em>The Chinese Journal</em> 15 (4): 200–201.</p><p class="Reference">Small, R.L., Ryburn, J.A., Cronn, R.C., Seelanan, T. &amp; Wendel, J.F. (1998) The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. <em>American Journal of Botany</em> 85: 1301–1315.</p><p class="Reference">         https://doi.org/10.2307/2446640</p><p class="Reference">Tabidze, V., Pipia, I., Gogniashvili, M., Kunelauri, N., Ujmajuridze, L., Pirtskhalava, M., Vishnepolsky, B., Hernandez, A.G., Fields, C.J. &amp; Beridze, T. (2017) Whole genome comparative analysis of four Georgian grape cultivars. <em>Molecular Genetics and Genomics</em> 292: 1377–1389.</p><p class="Reference">         https://doi.org/10.1007/s00438-017-1353-x</p><p class="Reference">Tröndle, D., Schroder, S., Kassemeyer, H.H., Kiefer, C., Koch, M.A. &amp; Nick, P. (2010) Molecular phylogeny of the genus <em>Vitis</em> (Vitaceae) based on plastid markers. <em>American Journal of Botany</em> 97: 1168–1178.</p><p class="Reference">         https://doi.org/10.3732/ajb.0900218</p><p class="Reference">Wan, Y., Schwaninger, H.R., Baldo, A.M., Labate, J.A., Zhong, G.Y. &amp; Simon, C.J. (2013) A phylogenetic analysis of the grape genus (<em>Vitis</em> L.) reveals broad reticulation and concurrent diversification during Neogene and Quaternary climate change. <em>BMC Evolutionary Biology</em> 13: 141.</p><p class="Reference">         https://doi.org/10.1186/1471-2148-13-141</p><p class="Reference">Wen, J. (2007) Vitaceae. <em>In</em>: Kubitzki, K. (Ed.) <em>The Families and Genera of Vascular Plants</em>. Springer-Verlag, Berlinm, pp. 466–478.</p><p class="Reference">         https://doi.org/10.1007/978-3-540-32219-1_54</p><p class="Reference">Wyman, S.K., Jansen, R.K. &amp; Boore, J.L. (2004) Automatic annotation of organellar genomes with DOGMA. <em>Bioinformatics</em> 20: 3252–3255.</p><p class="Reference">         https://doi.org/10.1093/bioinformatics/bth352</p><p class="Reference">Xie, H., Jiao, J., Fan, X., Zhang, Y., Jiang, J., Sun, H. &amp; Liu, C. (2017) The complete chloroplast genome sequence of Chinese wild grape <em>Vitis amurensis</em> (Vitaceae: <em>Vitis</em> L.). <em>Conservation Genetics Resources</em> 9: 43–46.</p><p class="Reference">         https://doi.org/10.1007/s12686-016-0615-y</p><p class="Reference">Zecca, G., Abbott, J.R., Sun, W., Spada, A., Sala, F. &amp; Grassi, F. (2012) The timing and the mode of evolution of wild grapes (<em>Vitis</em>). <em>Molecular Phylogenetics and Evolution</em> 62: 736–747.</p><p class="Reference">         https://doi.org/10.1016/j.ympev.2011.11.015</p><p class="Reference">Zhou, Y., Massonnet, M., Sanjak, J.S., Cantu, D. &amp; Gaut, B.S. (2017) Evolutionary genomics of grape (<em>Vitis vinifera</em> ssp. <em>vinifera</em>) domestication. <em>Proceedings of the National Academy of Science, USA</em> 114: 11715–11720.</p><p>                https://doi.org/10.1073/pnas.1709257114</p>