Abstract
This study documents a natural orchid hybrid, Cypripedium × microsaccos Kraenzl., recently discovered in Jilin Province, China, based on morphological characteristics and molecular biological evidence. Its parents are C. calceolus and C. shanxiense. Morphological analysis revealed that C. × microsaccos exhibits intermediate traits between its parents in terms of floral size, labellum color, and petal coloration. Molecular analysis using nuclear ribosomal internal transcribed spacer (ITS) and plastid ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) gene markers further confirmed its hybrid origin. Through combined morphological and molecular evidence, this study not only verifies the taxonomic status of C. × microsaccos but also enriches the species diversity within the genus Cypripedium.
References
- Alvarez, I. & Wendel, J.F. (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417–434. https://doi.org/10.1016/s1055-7903(03)00208-2
- Baldwin, B.G. (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the compositae. Molecular Phylogenetics and Evolution 1: 3–16. https://doi.org/10.1016/1055-7903(92)90030-k
- Cameron, K.M., Chase, M.W., Whitten, W.M., Kores, P.J., Jarrell, D.C., Albert, V.A., Yukawa, T., Hills, H.G. & Goldman, D.H. (1999) A phylogenetic analysis of the Orchidaceae: Evidence from rbcL nucleotide sequences. American Journal of Botany 86: 208–224. https://doi.org/10.2307/2656938
- Chen, X.Q., Liu, Z.J., Chen, L.J. & Li, L.Q. (2013) The genus Cypripedium in China. Science Press.
- Daniell, H., Jin, S.X., Zhu, X.G., Gitzendanner, M.A., Soltis, D.E. & Soltis, P.S. (2021) Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: History and phylogeny. Plant Biotechnology Journal 19: 430–447. https://doi.org/10.1111/pbi.13556
- Daniell, H., Lin, C.S., Yu, M. & Chang, W.J. (2016) Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biology 17: 134. https://doi.org/10.1186/s13059-016-1004-2
- Frosch, W. & Cribb, P. (2012) Hardy cypripedium: species, hybrids and cultivation.
- Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285
- Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108
- Kraenzlin, F.W.L. (1913) Cypripedium microsaccos Kraenzl. Russkii Botanicheskii Zhurnal 58.
- Liu, C., Zhou, X.F., Li, Y.N., Hittinger, C.T., Pan, R.H., Huang, J.Y., Chen, X.X., Rokas, A., Chen, Y. & Shen, X.X. (2024) The Influence of the number of tree searches on maximum likelihood inference in phylogenomics. Systematic Biology 73: 807–822. https://doi.org/10.1093/sysbio/syae031
- Rezső, S. (1969) Cypripedium guttatum subsp. microsaccos (Kraenzl.) Soó. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Biologica 11: 54.
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
- Shen, J.S. & Huang, L. (2024) The complete chloroplast genome sequence of Rhododendron Farrerae Tate ex sweet (Ericaceae). Mitochondrial Dna Part B 9: 1–4. https://doi.org/10.1080/23802359.2023.2294897
- Sugiura, N. & Takahashi, H. (2015) Comparative pollination biology in two sympatric varieties of Cypripedium macranthos (Orchidaceae) on Rebun Island, Hokkaido, Japan. Plant Species Biology 30: 225–230. https://doi.org/10.1111/1442-1984.12055
- Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564–577. https://doi.org/10.1080/10635150701472164
- Wang, Q., An, J., Wang, Y. & Zheng, B.Q. (2025) The complete chloroplast genome sequences of three Cypripedium species and their phylogenetic analysis. Scientific Reports 15: 13461. https://doi.org/10.1038/s41598-025-98287-3
- Xiang, C.Y., Gao, F.L., Jakovlic, I., Lei, H.P., Hu, Y., Zhang, H., Zou, H., Wang, G.T. & Zhang, D. (2023) Using PhyloSuite for molecular phylogeny and tree-based analyses. Imeta 2: e87. https://doi.org/10.1002/imt2.87
- Xie, J.M., Chen, Y.R., Cai, G.J., Cai, R.L., Hu, Z. & Wang, H. (2023) Tree visualization by one table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research 51: W587–W592. https://doi.org/10.1093/nar/gkad359
- Yang, T., Zhang, T.L., Guo, Y.H. & Liu, X. (2016) Identification of hybrids in potamogeton: Incongruence between plastid and ITS regions solved by a novel barcoding marker PHYB. Plos One 11: e0166177. https://doi.org/10.1371/journal.pone.0166177
- Zhang, G.Q., Liu, K.W., Chen, L.J., Xiao, X.J., Zhai, J.W., Li, L.Q., Cai, J., Hsiao, Y.Y., Rao, W.H., Huang, J., Ma, X.Y., Chung, S.W., Huang, L.Q., Tsai, W.C. & Liu, Z.J. (2013) A new molecular phylogeny and a new genus, Pendulorchis, of the Aerides-Vanda alliance (Orchidaceae: Epidendroideae). Plos One 8: e60097. https://doi.org/10.1371/journal.pone.0060097
