Abstract
Natural hybrids in Triticeae have been frequently reported from the sympatric species with at least one same sub-genome, or within species containing the same genome constitution in the Qinghai-Tibet Plateau at relative high altitudes. The natural hybrids have seldom been reported between species having completely different genome constitutions and distant phylogenetic relationships. We collected a plant HY2301 and assumed that it was a hybrid, based on the sterile pollen with inviability, and intermediate morphological characters with companion species. In this study, we performed morphology, cytogenetics, microscopy tissue, and phylogenetic analyses to investigate the genome constitution and origination. The results showed that: (1) morphologically, the spike of the hybrid HY2301, such as the spike length, the presence of glumes with awns, is similar to that of Campeiostachys kamoji, while it possesses awn and lemma in nearly equal length, and yellow anthers, which are similar to those of Leymus duthiei; (2) cytogenetically, sterile plants HY2301 is a pentaploid with 35 chromosomes (2n= 5x =35), consisting of the StYHNsXm genome, with abnormal male gamete development and mature embryo sac development; (3) the Campeiostachys kamoji with the StStYYHH genome and Leymus duthiei with the NsNsXmXm genome served as the maternal and paternal donors, respectively. Interestingly, genetic affinity exists between the St and Y sub-genomes in the hybrids and is paired as bivalent during the pollen mother cell (PMC) metaphase I stage. In summary, HY2301 is a pentaploid natural hybrid with StYHNsXm genome between two sympatric companion species, viz. the hexaploid Campeiostachys kamoji and the tetraploid Leymus duthiei, which serve as the maternal and paternal donor respectively. This study provides another case of natural hybridization, which provides new insights for understanding species origination and evolution in the tribe Triticeae.
References
- Aliyeva-Schnorr, L., Beier, S., Karafiátová, M., Schmutzer, T., Scholz, U., Dolezel, J., Stein, N. & Houben, A. (2015) Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H. The Plant Journal 84: 385–394. https://doi.org/10.1111/tpj.13006
- Alonso, L. & Kimber, G. (1981) The analysis of meiosis in hybrids. II. Triploid hybrids. Canadian Journal of Genetics and Cytology 23: 221–234. https://doi.org/10.1139/g81-02
- Barkworth, M.E. & Bothmer, R. (2009) Scientific names in the Triticeae. Genetics and Genomics of the Triticeae 7: 3–30. https://doi.org/10.1007/978-0-387-77489-3_1
- Chen, C., Zheng, Z.L., Wu, D.D., Tan, L., Yang, C.R., Liu, S.Q., Lu, J.L., Cheng, Y.R., Sha, L.N., Wang, Y., Kang, H.Y., Fan, X., Zhou, YH., Zhang, C.-B. & Zhang, H.Q. (2022) Morphological, cytological, and molecular evidences for natural hybridization between Roegneria stricta and Roegneria turczaninovii (Triticeae: Poaceae). Ecology and Evolution 12: e8517. https://doi.org/10.1002/ece3.8517
- Chen, N., Chen, W.J., Yan, H., Wang, Y., Kang, H.Y., Zhang, H.Q., Zhou, Y.H., Sun, G.L., Sha, L.N. & Fan, X. (2020) Evolutionary patterns of plastome uncover diploid-polyploid maternal relationships in Triticeae. Molecular Phylogenetics and Evolution 149: 106838. https://doi.org/10.1016/j.ympev.2020.106838
- Comai, L. (2005) The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6: 836–846. https://doi.org/10.1038/nrg1711
- Cooper, D.C. & Brink, R.A. (1942) The endosperm as a barrier to interspecific hybridization in flowering plants. Science 95: 75–76. https://doi.org/10.1126/science.95.2453.75
- Danilova, T.V., Akhunova, A.R., Akhunov, E.D., Friebe, B. & Gill, B.S. (2017) Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). The Plant Journal 92: 317–330. https://doi.org/10.1111/tpj.13657
- Goulet, B.E., Roda, F. & Hopkins, R. (2017) Hybridization in plants: old ideas, new techniques. Plant Physiology 173: 65–78. https://doi.org/10.1104/pp.16.01340
- Grass Phylogeny Working Group III. (2025) Nuclear phylogenomics of grasses (Poaceae) supports current classification and reveals repeated reticulation. New Phytologist 245: 818–834. https://doi.org/10.1111/nph.20263
- Han, F.P., Liu, B., Fedak, G. & Liu, Z.H. (2004) Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theoretical and Applied Genetics 109: 1070–1076. https://doi.org/10.1007/s00122-004-1719-4
- Hopkins, R. (2013) Reinforcement in plants. New Phytologist 197: 1095–1103. https://doi.org/10.1111/nph.12119
- Jiang, Y.F., Yuan, Z.W., Hu, H.Y., Ye, X.L., Zheng, Z., Wei, Y.M., Zheng, Y.L., Wang, Y.G. & Liu, C.J. (2020) Differentiating homoploid hybridization from ancestral subdivision in evaluating the origin of the D lineage in wheat. New Phytologist 228: 409–414. https://doi.org/10.1111/nph.16718
- Jones, T.A., Redinbaugh, M.G. & Zhang, Y. (2000) The western wheatgrass chloroplast genome originates in Pseudoroegneria. Crop Science 40: 43–47. https://doi.org/10.2135/cropsci2000.40143x
- Löve, Á. (1984) Conspectus of the Triticeae. Feddes Repertorium 95: 425–521. https://doi.org/10.1002/fedr.4910950702
- Lu, X.W., Liu, B., Liu, R.J. & Dou, Q.W. (2019) Cytogenetic identification on interspecific hybrids in genus Elymus L. of Qinghai Plateau. Bulletin of Botanical Research 39: 846–852. https://doi.org/10.7525/j.issn.1673-5102.2019.06.006
- Luo, Y.C., Chen, C., Wu, D.D., Lu, J.L., Sha, L.N., Fan, X., Cheng, Y.R., Kang, H.Y., Wang, Y., Zhou, Y.H., Zhang, C.B. & Zhang, H.Q. (2022) Confirmation of natural hybridization between Kengyilia (StStYYPP) and Campeiostachys (StStYYHH) (Triticeae: Poaceae) based on morphological and molecular cytogenetic analyses. Cytogenetic and Genome Research 162: 334–344. https://doi.org/10.1159/000526883
- Marques, I., Loureiro, J., Draper, D., Castro, M. & Castro, S. (2018) How much do we know about the frequency of hybridization and polyploidy in the Mediterranean region? Plant Biology 20: 21–37. https://doi.org/10.1111/plb.12639
- Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534. https://doi.org/10.1093/molbev/msaa015
- Moran, B.M., Payne, C., Langdon, Q., Powell, D.L., Brandvain, Y. & Schumer, M. (2021) The genomic consequences of hybridization. eLife 10: e69016. https://doi.org/10.7554/eLife.69016
- Murray, M.G. & Thompson, W.F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8: 4321–4325. https://doi.org/10.1093/nar/8.19.4321
- Nishiwaki, A., Mizuguti, A., Kuwabara, S., Toma, Y., Ishigaki, G., Miyashita, T., Yamada, T., Matuura, H., Yamaguchi, S., Rayburn, A.L., Akashi, R. & Stewart, J.R. (2011) Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. American Journal of Botany 98: 154–159. https://doi.org/10.3732/ajb.1000228
- Qiu, T., Liu, Z. & Liu, B. (2020) The effects of hybridization and genome doubling in plant evolution via allopolyploidy. Molecular Biology Reports 47: 5549–5558. https://doi.org/10.1007/s11033-020-05627-9
- Rieseberg, L.H., Kim, S.C., Randell, R.A., Whitney, K.D., Gross, B.L. & Lexer, C. (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129: 149–165. https://doi.org/10.1007/s10709-006-9010-z
- Rieseberg, L.H. & Noyes, R.D. (1998) Genetic map-based studies of reticulate evolution in plants. Trends in Plant Science 3: 254–259. https://doi.org/10.1016/S1360-1385(98)01256-7
- Schley, R.J., Twyford, A.D. & Pennington, R.T. (2022) Hybridization: a ‘double-edged sword’ for Neotropical plant diversity. Botanical Journal of the Linnean Society 199(1): 331–356. https://doi.org/10.1093/botlinnean/boab070
- Schmidt, C., Hinterberger, V., Philipp, N., Reif, J.C. & Schnurbusch, T. (2024) Hybrid grain production in wheat benefits from synchronized flowering and high female flower receptivity. Journal of Experimental Botany 23: erae430. https://doi.org/10.1093/jxb/erae430
- Soltis, D.E., Segovia-Salcedo, M.C., Jordon-Thaden, I., Majure, L., Miles, N.M., Mavrodiev, E.V., Mei, W.B., Cortez, M.B., Soltis, P.S. & Gitzendanner, M.A. (2014) Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytologist 202: 1105–1117. https://doi.org/10.1111/nph.12756
- Städler, T., Florez-Rueda, A.M. & Roth, M.A. (2021) Revival of effective ploidy: the asymmetry of parental roles in endosperm-based hybridization barriers. Current Opinion in Plant Biology 61: 102015. https://doi.org/10.1016/j.pbi.2021.102015
- Stull, G.W., Pham, K.K., Soltis, P.S. & Soltis, D.E. (2023) Deep reticulation: the long legacy of hybridization in vascular plant evolution. The Plant Journal 114: 743–766. https://doi.org/10.1111/tpj.16220
- Taylor, S.A. & Larson, E.L. (2019) Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nature Ecology & Evolution 3: 170–177. https://doi.org/10.1038/s41559-018-0777-y
- Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. https://doi.org/10.1093/nar/22.22.4673
- Tian, D.K., Li, C., Xiao, Y., Fu, N.F., Tong, Y. & Wu, R.J. (2017) Occurrence and characteristics of natural hybridization in Begonia in China. Biodiversity Science 25: 654–674. https://doi.org/10.17520/biods.2017050
- Todesco, M., Pascual, M.A., Owens, G.L., Ostevik, K.L., Moyers, B.T., Hübner, S., Hahn, M-A., Caseys, C., Bock, D.G. & Rieseberg, L.H. (2016) Hybridization and extinction. Evolutionary Applications 9: 892–908. https://doi.org/10.1111/eva.12367
- Wang, R.R.C. (1992) Genome relationships in the perennial Triticeae based on diploid hybrids and beyond. Hereditas 116: 133–136. https://doi.org/10.1111/j.1601-5223.1992.tb00210.x
- Whitney, K.D., Randell, R.A. & Rieseberg, L.H. (2006) Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus. The American Naturalist 167: 794–807. https://doi.org/10.1086/504606
- Wu, D.D., Liu, X.Y., Yu, Z.H., Tan, L., Lu, J.L., Cheng, YR., Sha, L.N., Fan, X., Kang, H.Y., Wang, Y., Zhou, Y.H., Zhang, C.B. & Zhang, H.Q. (2023) Recent natural hybridization in Elymus and Campeiostachys of Triticeae: evidence from morphological, cytological and molecular analyses. Botanical Journal of the Linnean Society 201: 428–442. https://doi.org/10.1093/botlinnean/boac072
- Xie, W.G., Zhang, J.C., Zhao, X.H., Zhang, Z.Y. & Wang, Y.R. (2017) Transcriptome profiling of Elymus sibiricus, an important forage grass in Qinghai-Tibet plateau, reveals novel insights into candidate genes that potentially connected to seed shattering. BMC Plant Biology 17: 78–92. https://doi.org/10.1186/s12870-017-1029-z
- Yen, C., Yang, J.L. & Baum, B.R. (2024) Biosystematics of Triticeae Volume III. Springer Nature Singapore, 241 pp. https://doi.org/10.1007/978-981-97-8784-5
- Yen, C. & Yang, J.L. (2011) Biosystematics of Triticeae Volume IV. Chinese Agricultural Press, Beijing, China, 618 pp.
- Yen, C. & Yang, J.L. (2022) Biosystematics of Triticeae Volume V. Springer Nature Singapore, 646 pp. https://doi.org/10.1007/978-981-19-0015-0
- Zeng, J., Fan, X., Zhang, H.Q., Sha, L.N., Kang, H.Y., Zhang, L., Yang, R.W., Ding, C.B. & Zhou, Y.H. (2012) Molecular and cytological evidences for the natural wheat grass hybrids occurrence and origin in west China. Genes & Genomics 34: 499–507. https://doi.org/10.1007/s13258-012-0058-0
- Zeng, Y.X., Hu, C.Y., Lu, Y.G., Li, J.Q. & Liu, X.D. (2009) Abnormalities occurring during female gametophyte development result in the diversity of abnormal embryo sacs and leads to abnormal fertilization in indica/japonica hybrids in rice. Journal of Integrative Plant Biology 51: 3–12. https://doi.org/10.1111/j.1744-7909.2008.00773.x
- Zhang, H.-Q., Yang, H. & Lang, J. (2016) Reciprocal crosses of Triticum aestivum and Aegilops tauschii. The Journal of Northwest A&F University (Natural Science Edition) 44: 33–38.
- Zhang, T., Huang, W., Zhang, L., Li, D.Z., Qi, J. & Ma, H. (2024) Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages. Nature Communications 15: 3305. https://doi.org/10.1038/s41467-024-47640-7
- Zhu, M.K., Bao, J.H., Pang, J.L., Zhou, S.Q., Fang, Z.Y., Zheng, W., Zhang, Y.Z. & Wu, D.D. (2024) Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat. Acta Agronomica Sinica 50: 1406–1420. https://doi.org/10.3724/SP.J.1006.2024.31056
