Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-08-06
Page range: 1-39
Abstract views: 700
PDF downloaded: 33

What biogeography and DNA can reveal: new delimitations of Laserpitium s.l. (Apiaceae) genera and a new allied Iberian genus

Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
Institute of Natural Resources and Territorial Planning (INDUROT), Campus de Mieres, C/. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
Department of Organisms and Systems Biology, University of Oviedo, C/. Catedrático Rodrigo Uría s/n, 33071, Oviedo, Spain
Department of Organisms and Systems Biology, University of Oviedo, C/. Catedrático Rodrigo Uría s/n, 33071, Oviedo, Spain; Institute of Natural Resources and Territorial Planning (INDUROT), Campus de Mieres, C/. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
Department of Organisms and Systems Biology, University of Oviedo, C/. Catedrático Rodrigo Uría s/n, 33071, Oviedo, Spain; Institute of Natural Resources and Territorial Planning (INDUROT), Campus de Mieres, C/. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
Biogeography Carpology Elaeoselinum Lucilebutina Silphiodaucus Thapsia Eudicots

Abstract

Laserpitium s.l. (Apiaceae family) is a taxonomically complex genus comprising 13–35 herbaceous species distributed through the North Hemisphere. Molecular studies based on nuclear markers and focused on the Scandiceae tribe divided this genus into various genera and revealed that their fruit (schizocarp) morphology generated non-monophyletic groups. In this context, some Iberian subspecies of Laserpitium latifolium, Laserpitium gallicum, Thapsia nestleri, Thapsia eliasii, and Silphiodaucus prutenicus subsp. dufourianus have an unclear taxonomic status, while Laserpitium longiradium genetic adscription has not been confirmed. We aim to determine their phylogenetic position within Laserpitium s.l. and their taxonomic status based on nuclear (ITS) and plastid (rpl16, trnL and trnL–trnF) markers, carpological data and biogeographic analyses. Our topologies and biogeographic analyses only validated one of these subspecies. Nevertheless, phylogenetic relationships, niche differences and biogeographic ranges supported the division of Thapsia s.l. into three genera: Iberian-French Thapsia s.s., a new Iberian genus (formed by Thapsia nestleri, Thapsia eliasii and Laserpitium longiradium) and the Mediterranean Elaeoselinum, in which various species have been included for the first time. The Iberian Silphiodaucus prutenicus subsp. dufourianus is a separate species. Finally, overlapping carpological features within Laserpitium s.l. further supports the schizocarp homoplastic character hypothesis.

References

  1. Akaike, H.A. (1974) New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control 19: 716–723. https://doi.org/10.1109/TAC.1974.1100705
  2. Arenas Posada, J.A. & García Martín, F. (1993) Atlas carpológico y corológico de la subfamilia Apioideae Drude (Umbelliferae) en España peninsular y Baleares. Ruizia Tomo 12. Monografías del Real Jardín Botánico. Consejo Superior de Investigaciones Científicas (CSIC), Madrid.
  3. Banasiak, Ł., Wojewódzka, A., Baczyński, J., Reduron, J.P., Piwczyński, M., Kurzyna-Młynik, R., Gutaker, R., Czarnocka-Cieciura, A., Kosmala-Grzechnik, S. & Spalik, K. (2016) Phylogeny of Apiaceae subtribe Daucinae and the taxonomic delineation of its genera. Taxon 65: 563–585. https://doi.org/10.12705/653.8
  4. Barton, M., Waterhouse, G., Procter, A., Martin, J. & Clamp, D. (2009) Jalview Version 2-A multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
  5. Bentham, G. & Hooker, J.D. (1867) Umbelliferae. In: Genera plantarum. Voluminis III. Pars I. L. Reeve Co., London, pp. 859–931.
  6. Boissier, E. (1838a) Elaeoselinum millefolium. In: Elenchus Plantarum Novarum minusque cognitarum quas in itinere hispanico legit. Typographia Lador et Ramboz, Genevae, pp. 50.
  7. Boissier, E. (1838b) Margotia. In: Elenchus Plantarum Novarum minusque cognitarum quas in itinere hispanico legit. Typographia Lador et Ramboz, Genevae, pp. 52.
  8. de Bolos, O. & Vigo, J. (1974) Notes sobre Taxonomía I. Nomenclatura de Plantes, I. Butlletí de la Institució Catalana d’Historia Natural 38: 61–89.
  9. Brummitt, R.K. (2001) World Geographical Scheme for Recording Plant Distributions. 2nd edition. The Hunt Institute for Botanical Documentation Carnegie Mellon University, Pittsburgh.
  10. Butler, H. (2021) mgrs: Converting to and from MGRS and Decimal Degrees. Github. Available from: https://github.com/hobuinc/mgrs (accessed 19 May 2021)
  11. Calviño, C.I., Martínez, S.G. & Downie, S.R. (2008) Morphology and biogeography of Apiaceae subfamily Saniculoideae as inferred by phylogenetic analysis of molecular data. American Journal of Botany 95: 196–214. https://doi.org/10.3732/ajb.95.2.196
  12. De Candolle, A.P. (1830a) CXIII. Laserpitium. In: De Candolle, A.P. (Ed.) Prodromus systematis naturalis regni vegetabilis, sive, Enumeratio contracta ordinum generum specierumque plantarum huc usque cognitarum, juxta methodi naturalis, normas digesta. Sumptibus Sociorum Treuttel et Würtz, Parisii, pp. 204–207. https://doi.org/10.5962/bhl.title.286.
  13. De Candolle, A.P. (1830b) CXIX. Elaeoselinum. In: De Candolle, A.P. (Ed.) Prodromus systematis naturalis regni vegetabilis, sive, Enumeratio contracta ordinum generum specierumque plantarum huc usque cognitarum, juxta methodi naturalis, normas digesta. Sumptibus Sociorum Treuttel et Würtz, Parisii, pp. 215–216.
  14. CBOL Plant Working Group, Huson, D. & Bryant, D.H. (2006) Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254–267. https://doi.org/10.1093/molbev/msj030
  15. Chatelain, C., Chambouleyron, M., Charrier, M., Léger, J.F. & Perret, M. (2021) Révision du genre Ammodaucus (Apiaceae) en Afrique du Nord. Candollea 76: 191–200. https://doi.org/10.15553/c2021v762a2
  16. Chernomor, O., von Haeseler, A. & Minh, B.Q. (2016) Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices. Systematic Biology 65: 997–1008. https://doi.org/10.1093/sysbio/syw037
  17. Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. (2002) TCS: Estimating Gene Genealogies. In: 16th International Parallel and Distributed Processing Symposium (IPDPS 2002), Fort Lauderdale, (FL, USA), pp. 0184–0184.
  18. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) JModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9: 772. https://doi.org/10.1038/nmeth.2109
  19. Dixon, P. (2003) VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14: 927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
  20. Downie, S.R. & Katz-Downie, D.S. (1996) A Molecular Phylogeny of Apiaceae Subfamily Apioidae : Evidence from Nuclear ribosomal DNA Internal Transcribed Spacer Sequences I. American Journal of Botany 83: 234–251. https://doi.org/10.1002/j.1537-2197.1996.tb12701.x
  21. Downie, S.R., Katz-Downie, D.S. & Watson, M.F. (2000) A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoC1 intron sequences: towards a suprageneric classification of subfamily Apioideae. American Journal of Botany 87: 273–292. https://doi.org/10.2307/2656915
  22. Downie, S.R., Plunkett, G.M., Watson, M.F., Spalik, K., Katz-Downie, D.S., Valiejo-Roman, C.M., Terentieva, E.I., Troitsky, A.V., Lee, B-Y., Lahham, J. & El-Oqlah, A. (2001) Tribes and clades within Apiaceae subfamily Apioideae:the contribution of molecular data. Edinburgh Journal of Botany 58: 301–330. https://doi.org/10.1017/S0960428601000658
  23. Downie, S.R., Spalik, K., Katz-Downie, D.S. & Reduron, J-P. (2010) Major clades within Apiaceae subfamily Apioideae as inferred by phylogenetic analysis of nrDNA ITS sequences. Plant Diversity and Evolution 128: 111–136. https://doi.org/10.1127/1869-6155/2010/0128-0005
  24. Drude, O. (1898) Umbelliferae. In: Engler, K. & Prantl, A. (Eds.) Die natürlichen Pflanzenfamilien vol. III. Engelmann, Leipzig, pp. 63–250.
  25. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340
  26. European Environment Agency (EEA) (2017) Biogeographical regions in Europe. Available from: https://www.eea.europa.eu/data-and-maps/figures/biogeographical-regions-in-europe-2 (accessed 10 March 2023)
  27. Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315. https://doi.org/10.1002/joc.5086
  28. Font y Quer, P. (1947) Acerca de algunas plantas raras, críticas o nuevas. Collectanea botanica a Barcinonensi Botanico Instituto edita 1: 261–314.
  29. Food and Agriculture Organization of the United Nations (FAO) (2024) Digital Soil Map of the World. Version 3.6. FAO Map Catalog. Available from: https://data.apps.fao.org/map/catalog/srv/eng/catalog.search?id=14116#/metadata/446ed430-8383-11db-b9b2-000d939bc5d8 (accessed 13 January 2024)
  30. García Martín, F. & Silvestre, S. (1983) Distichoselinum García Martín & Silvestre, género nuevo de Umbelliferae. Lagascalia 12: 99–107.
  31. García Martín, F. & Silvestre, S. (1985) Revisión de los géneros Elaeoselinum Koch ex DC, Margotia Boiss. y Distichoselinum García Martín & Silvestre (Umbelliferae). Lagascalia 13: 205–238.
  32. Global Biodiversity Information Facility (GBIF) (2024) GBIF Laserpitium Occurrence Downloads. Available from: https://www.gbif.org (accessed 10 October 2021-14 January 2024). https://doi.org/10.15468/dl.etnb7v; https://doi.org/10.15468/dl.mugdhx
  33. [* See Supplementary Material for full list and dates]
  34. Gutiérrez, L., Blanca, G., Lorite, J. & López, M. (2004) Laserpitium longiradium Boiss. In: Bañares, À., Blanca, G., Güemes, J., Moreno, J.C. & Ortiz, S. (Eds.) Atlas y Libro Rojo de la Flora Vascular Amenazada de España. Taxones prioritarios. Ministerio de Medio Ambiente, pp. 336–337.
  35. Hand, R. (2011) The Euro Med treatment of Apiaceae. Willdenowia 41: 245–250. https://doi.org/10.3372/wi.41.41205
  36. Hasegawa, M., Kishino, H. & Yano, T. (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160–174. https://doi.org/10.1007/BF02101694
  37. Hijmans, R.J., van Etten, J., Sumner, M., Cheng, J., Baston, D., Bevan, A., Bivand, R., Busetto, L., Canty, M., Fasoli, B., Forrest, D., Ghosh, A., Golicher, D., Gray, J., Greenberg, J.A., Hiemstra, P., Hingee, K., Llich, A., Karney, C., Mattiuzzi, M., Mosher, S., Naimi, B., Nowosad, J., Pebesma, E., Lamigueiro, O.P., Racine, E.B., Rowlingson, B., Shortridge, A.,Venables, B. & Wueest, R. (2024) raster: Geographic Data Analysis and Modeling. Rspatial. Available from: https://rspatial.org/raster (accessed 26 November 2023)
  38. Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281
  39. Iamonico, D., Bartolucci, F. & Conti, F. (2016) New combinations in the genus Siler (Apiaceae) for the Italian Flora. Phytotaxa 268: 89–90. https://doi.org/10.11646/phytotaxa.268.1.9
  40. International Union of Pure and Applied Chemistry (IUPAC) (2020) Available from: https://iupac.org/ (accessed 22 December 2020)
  41. Jaccard, P. (1901) Distribution de la flore alpine dans le bassin des dranses et dans quelques règions voisines. Bulletin de la Société vaudoise des sciences naturelles 37: 241–272.
  42. Jordan, W.C., Courtney, M.W. & Neigel, J.E. (1996) Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in North American duckweeds (Lemnaceae). American Journal of Botany 83: 430–439. https://doi.org/10.1002/j.1537-2197.1996.tb12724.x
  43. Jurgiel, B. (2024) Point sampling tool (Version 0.5.4). QGIS Python Plugins Repository. Available from: https://plugins.qgis.org/plugins/pointsamplingtool/ (accessed 12 January 2024)
  44. Jury, S.L. (1986) Fruit and leaf variation in the African species of the Umbelliferae tribe Caucalideae. Acta Universitatis Upsaliensis. Symbolae botanicae Upsalienses 26: 181–188. https://doi.org/10.1007/BF01086379
  45. Kadereit, J.W., Albach, D.C., Ehrendorfer, F., Galbany-Casals, M., Garcia-Jacas, N., Gehrke, B., Kadereit, G., Kilian, N., Klein, J.T., Koch, M.A., Kropf, M., Oberprieler, C., Pirie, M.D., Ritz, C.M., Röser, M., Spalik, K., Susanna, A., Weigend, M., Welk, E., Wesche, K. & Zhang, L-B. (2016) Which changes are needed to render all genera of the German flora monophyletic? Willdenowia 46: 39–91. https://doi.org/10.3372/wi.46.46105
  46. Kassambara, A. & Mundt, F. (2016) factoextra : Extract and Visualize the Results of Multivariate Data Analyses factoextra (Version 1.0.7). R Packages by Datanovia. Available from: https://rpkgs.datanovia.com/factoextra/index.html (accessed 3 December 2023)
  47. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  48. Kelchner, S.A. & Clark, L.G. (1997) Molecular Evolution and Phylogenetic Utility of the Chloroplast rpl16 Intron in Chusquea and the Bambusoideae (Poaceae). Molecular Phylogenetics and Evolution 8: 385–397. https://doi.org/10.1006/mpev.1997.0432
  49. Kljuykov, E.V., Liu, M., Ostroumova, T.A., Pimenov, M.G., Tilney, P.M. & Van Wyk, B.E. (2004) Towards a standardised terminology for taxonomically important morphological characters in the Umbelliferae. South African Journal of Botany 70: 488–496. https://doi.org/10.1016/S0254-6299(15)30233-7
  50. Kruskal, J.B. (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115–129. https://doi.org/10.1007/BF02289694
  51. Lê, S., Josse, J. & Husson, F. (2008) FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software 25: 1–18. https://doi.org/10.18637/jss.v025.i01
  52. Leigh, J.W. & Bryant, D. (2015) POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116. https://doi.org/10.1111/2041-210X.12410
  53. Linnaeus, C. (1753) Laserpitium. In: Species plantarum exhibentes plants rite cognitas ad genera relatas cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Tomus I. Impensis Laurentii Salvii, Holmiae, pp. 248–249.
  54. Linnaeus, C. (1764) Laserpitium. In: Species plantarum exhibentes plants rite cognitas ad genera relatas cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Tomus I. Editio Tertia. Vindobonae: Joannis Thomae de Trattner, Vindobonae, pp. 357–358.
  55. Lirola, M.J.M., Mesa, J.M. & Blanca, G. (2002) La identidad de dos táxones endémicos de Laserpitium L.(Umbelliferae): en Sierra Nevada (sur de España). Anales del Jardín Botánico de Madrid 59: 339–342.
  56. Liu, M., Plunkett, G.M., Lowry, P.P., Van Wyk, B.E. & Tilney, P.M. (2006) The taxonomic value of fruit wing types in the order Apiales. American Journal of Botany 9: 1357–1368. https://doi.org/10.3732/ajb.93.9.1357
  57. Lyskov, D., Degtjareva, G., Samigullin, T. & Pimenov, M. (2015) Placement of the Turkish endemic genus Ekimia (Apiaceae) based on morphological and molecular data. Turkish Journal of Botany Systematic 39: 673–680. https://doi.org/10.3906/bot-1405-111
  58. Maddison, W.P. & Maddison, D.R. (2023) Mesquite: a modular system for evolutionary analysis. Version 3.81. Mesquire project. Available from: http://www.mesquiteproject.org (accessed 29 December 2023)
  59. Martín-Hernanz, S., Albaladejo, R.G., Lavergne, S., Rubio, E., Grall, A. & Aparicio, A. (2021) Biogeographic history and environmental niche evolution in the Palearctic genus Helianthemum (Cistaceae). Molecular Phylogenetics and Evolution 163: 107238. https://doi.org/10.1016/j.ympev.2021.107238
  60. Mathias, M.E. (1965) Distribution Patterns of Certain Umbelliferae. Annals of the Missouri Botanical Garden 52: 387–398. https://doi.org/10.2307/2394801
  61. Matzke, N.J. (2018) BioGeoBEARS: BioGeography with Bayesian (and likelihood) Evolutionary Analysis with R Scripts version 1.1.1. Zenodo. Available from: http://dx.doi.org/10.5281/zenodo.1478250 (accessed 14 January 2024)
  62. Matzke, N.J. (2012) Founder-event speciation in BioGeoBEARS package dramatically improves likelihoods and alters parameter inference in Dispersal–Extinction–Cladogenesis(DEC) analyses. Frontiers of Biogeography 4: 210. [http://phylo.wikidot.com/matzke-2013-international-biogeography-society-poster]
  63. Matzke, N.J. (2014) Model Selection in Historical Biogeography Reveals that Founder-Event Speciation Is a Crucial Process in Island Clades. Systematic Biology 63: 951–970. https://doi.org/10.1093/sysbio/syu056
  64. Menglan, S., Fading, P., Zehui, P., Watson, M.F., Cannon, J.F.M., Holmes-Smith, I., Kljuykov, E.V, Phillippe, L.R. & Pimenov, M.G. (2005) Apiaceae (Umbelliferae). Flora of China 14: 1–205.
  65. Minchin, P.R. (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–107. https://doi.org/10.1007/978-94-009-4061-1_9
  66. Minh, B.Q., Nguyen, M.A.T. & von Haeseler, A. (2013) Ultrafast Approximation for Phylogenetic Bootstrap. Molecular Biology and Evolution 30: 1188–1195. https://doi.org/10.1093/molbev/mst024
  67. Montserrat, P. (2003a) El “Laserpitium latifolium” pirenaico-cantábrico. Acta Botanica Barcinonensia 49: 19–37.
  68. Montserrat, P. (2003b) Laserpitium gr. nestleri (Umbelliferae). Collectanea Botanica 26: 47–81. https://doi.org/10.3989/collectbot.2003.v26.15
  69. Montserrat, P. (2003c) Laserpitium L. In: Castroviejo, S., Nieto Feliner, G., Jury, S.L. & Herrero, A. (Eds.) Flora iberica. Plantas vasculares de la Peninsula Ibérica e Islas Baleares. Vol. X Araliaceae-Umbelliferae. Real Jardín Botánico, Consejo Superior de Investigaciones Científicias (CSIC), pp. 383–400.
  70. Montserrat, P. (2002) Los géneros Laserpitium L. y Guillonea Coss (Umbelliferae) en “Flora Iberica”. Anales del Jardín Botánico de Madrid 59: 378–380.
  71. Nguyen, L-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300
  72. Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Borman, T., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M.O., Lahti, L., Martino, C., McGlinn, D., Ouellette, M.-H., Cunha, E.R., Smith, T., Stier, A., Ter Braak, C.J.F. & Weedon, J. (2022) vegan: R package for community ecologists. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. GitHub. Available from: https://github.com/vegandevs/vegan (accessed 26 November 2023)
  73. Open Source Geospatial Foundation Project. (2024) QGIS Geographic Information System. Available from: http://qgis.org (accessed 12 January 2024)
  74. Pagès, J. (2004) Analyse factorielle de données mixtes: principe et exemple d’application. Revue de statistique appliquée 52: 93–111.
  75. Pimenov, M.G. & Constance, L. (1985) Nomenclature of suprageneric taxa in Umbelliferae/Apiaceae. Taxon 34: 493–501. https://doi.org/10.2307/1221221
  76. Pimenov, M.G. & Leonov, M.V. (1993) The genera of the Umbelliferae. Royal Botanic Gardens, Kew, London.
  77. Plunkett, G.M., Chandler, G.T., Lowry, P.P., Pinney, S.M. & Sprenkle, T.S. (2004) Recent advances in understanding Apiales and a revised classification. South African Journal of Botany 70: 371–381. https://doi.org/10.1016/S0254-6299(15)30220-9
  78. Plunkett, G.M., Pimenov, M.G., Reduron, J.-P., Kljuykov, E.V., van Wyk, B.-E., Ostroumova, T.A., Henwood, M.J., Tilney, P.M., Spalik, K., Watson, M.F., Lee, B.-Y., Pu, F.-D., Webb, C.J., Hart, J.M., Mitchell, A.D. & Muckensturm, B. (2018) Apiaceae. In: Kadereit, J. & Bittrich, V. (Eds.) Flowering Plants. Eudicots. The Families and Genera of Vascular Plants, vol 15. Apiales, Gentianales (except Rubiaceae). Springer Cham., pp. 9–206. https://doi.org/10.1007/978-3-319-93605-5_2
  79. Plunkett, G.M., Soltis, D.E. & Soltis, P.S. (1996) Evolutionary patterns in Apiaceae: Inferences based on matK sequence data. Systematic Botany 21: 477–495. https://doi.org/10.2307/2419610
  80. Prieto, J.A.F, Arjona, J.M., Sanna, M., Pérez, R. & Cires, E. (2013) Phylogeny and systematics of Micranthes (Saxifragaceae): An appraisal in European territories. Journal of Plant Research 126: 605–611. https://doi.org/10.1007/s10265-013-0566-2
  81. Pujadas-Salvà, A.J. & Plaza-Arregui, L. (2003) Studies on Thapsia (Apiaceae) from north-western Africa: a forgotten and a new species. Botanical Journal of the Linnean Society 143: 433–442. https://doi.org/10.1111/j.1095-8339.2003.00233.x
  82. Pujadas-Salvà, A.J. & Rosselló, J.A. (2003) Thapsia L. In: Castroviejo, S., Nieto Feliner, G., Jury, S.L. & Herrero, A. (Eds.) Flora iberica. Plantas vasculares de la Peninsula Ibérica e Islas Baleares. Vol. X Araliaceae-Umbelliferae. Real Jardín Botánico, Consejo Superior de Investigaciones Científicias (CSIC), pp. 401–410.
  83. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology 67: 901–904. https://doi.org/10.1093/sysbio/syy032
  84. Reduron, J-P. (2007) Ombellifères de France. Vol. 2. In: Bulletin de la Société Botanique du Centre-Ouest, numéro spécial 28. Société Botanique du Centre-Ouest, Jarnac, pp. 1143–1727.
  85. Ree, R.H., Moore, B.R., Webb, C.O. & Donoghue, M.J. (2005) A Likelihood Framework for Inferring the Evolution of Geographic Range on Phylogenetic trees. Evolution 59: 2299–2311. https://doi.org/10.1111/j.0014-3820.2005.tb00940.x
  86. Ree, R.H. & Smith, S.A. (2008) Maximum Likelihood Inference of Geographic Range Evolution by Dispersal, Local Extinction, and Cladogenesis. Systematic Biology 57: 4–14. https://doi.org/10.1080/10635150701883881
  87. Rodríguez, F., Oliver, J.L., Marín, A. & Medina, J.R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485–501. https://doi.org/10.1016/S0022-5193(05)80104-3
  88. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  89. Rouy, G. & Camus, E-G. (1901) Laserpitium prutenicum. In: Société des sciences naturelles de la Charente-Inférieure (Eds.) Flore de France ou Description des plantes qui croissent spontanément en France, en Corse et en Alsace-Lorraine. Tome VII. Les Fils d’Émile Deyrolle, Paris, pp. 229–230.
  90. Şenol, S.G., Eroğlu, V., Pelit, N.B. & Bozyel, D. (2018) Ekimia ozcan-secmenii (Apiaceae), a new species from Southwest Anatolia, Turkey. Turkish Journal of Botany 42: 510–517. https://doi.org/10.3906/bot-1706-16
  91. Shishkin, B.K. (1974) Laserpitium L. In: Komarov, V.L. (Ed.) Flora of the U.S.S.R. Vol. 17. Smithsonian Institution, the National Science Foundation, Washington, DC, pp. 199–204.
  92. Sokal, R. & Michener, C. (1958) A statistical method for evaluating systematic relationships. The University of Kansas Science Bulletin 38: 1049–1438.
  93. Spalik, K., Wojewódzka, A., Constantinidis, T., Downie, S.R., Gierek, M. & Banasiak, Ł. (2019) Laserocarpum, a new genus of Apiaceae endemic to Greece. Acta Societatis Botanicorum Poloniae 88: 3635. https://doi.org/10.5586/asbp.3635
  94. Spalik, K., Wojewódzka, A. & Downie, S.R. (2001) The evolution of fruit in Scandiceae subtribe Scandicinae (Apiaceae). Canadian Journal of Botany 79: 1358–1374. https://doi.org/10.1139/cjb-79-11-1358
  95. Sun, Y., Skinner, D.Z., Liang, G.H. & Hulbert, S.H. (1994) Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics 89: 26–32. https://doi.org/10.1007/BF00226978
  96. Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109. https://doi.org/10.1007/BF00037152
  97. Tavaré, S. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on mathematics in the life sciences 17: 57–86.
  98. The Euro+Med Plantbase. (2020) Laserpitium L. The Euro+Med Plantbase Project. Available from: http://ww2.bgbm.org/EuroPlusMed/PTaxonDetail.asp?NameCache=LaserpitiumPTRefFk=7500000 (accessed 24 March 2021)
  99. Theobald, W.L. (1971) Comparative anatomical and developmental studies in the Umbelliferae. In: Heywood, V.H. (Ed.) The biology and chemistry of the Umbelliferae. Academic Press, London, pp. 177–197.
  100. Töpel, M., Zizka, A., Calió, M.F., Scharn, R., Silvestro, D. & Antonelli, A. (2017) SpeciesGeoCoder: fast categorization of species occurrences for analyses of biodiversity, biogeography, ecology, and evolution. Systematic Biology 66: 145–151. https://doi.org/10.1093/sysbio/syw064
  101. Trifinopoulos, J., Nguyen, L-T., von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44: W232–W235. https://doi.org/10.1093/nar/gkw256
  102. Tutin, T.G. (1981) Umbelliferae. In: Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walter, S.M. & Webb, D.A. (Eds.) Flora Europaea: Rosaceae to Umbelliferae Volume 2. 3rd edition. Cambridge University Press, London, pp. 315–375. https://doi.org/10.5281/zenodo.293200
  103. Veuillet, J.M. (1959) Contribution à l’étude morphologique et anatomique du genre Elaeoselinum au Maroc. Travaux de l’Institut Scientifique Chérifien Série Bot.: 1–48.
  104. Villalba, M.B.C. & Doménech, M. (2007) Notas sobre Laserpitium L. (Umbelliferae) en el sudeste ibérico. Flora Montiberica 36: 15–18.
  105. Weitzel, C., Rønsted, N., Spalik, K. & Simonsen, H.T. (2014) Resurrecting deadly carrots: towards a revision of Thapsia (Apiaceae) based on phylogenetic analysis of nrITS sequences and chemical profiles. Botanical Journal of the Linnean Society 174: 620–636. https://doi.org/10.1111/boj.12144
  106. Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. https://doi.org/10.1007/978-0-387-98141-3
  107. Willkomm, M. & Lange, J. (1880) Prodromus florae Hispanicae seu synopsis methodica omnium plantarum in Hispania. Volumen III. E. Schweizerbart, Stuttgart.
  108. Wojewódzka, A., Baczyński, J., Banasiak, Ł., Downie, S.R., Czarnocka-Cieciura, A., Gierek, M., Frankiewicz, K. & Spalik, K. (2019) Evolutionary shifts in fruit dispersal syndromes in Apiaceae tribe Scandiceae. Plant Systematics and Evolution 305: 401–414. https://doi.org/10.1007/s00606-019-01579-1
  109. Yang, Z. (1994) Maximumlikelihood phylogenetic estimation from DNA sequences with variable rates oversites : approximate methods. Journal of Molecular evolution 39: 306–314. https://doi.org/10.1007/BF00160154
  110. Zharkikh, A. (1994) Estimation of evolutionary distances between nucleotide sequences. Journal of Molecular Evolution 39: 315–329. https://doi.org/10.1007/BF00160155

How to Cite

González-Toral, C., Sanna, M., Nava, H.S., Prieto, J.A.F. & Cires, E. (2025) What biogeography and DNA can reveal: new delimitations of Laserpitium s.l. (Apiaceae) genera and a new allied Iberian genus. Phytotaxa 714 (1): 1–39. https://doi.org/10.11646/phytotaxa.714.1.1