Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-03-03
Page range: 1-18
Abstract views: 166
PDF downloaded: 12

Update of the taxonomic circumscription and biogeographical delimitation range of Neltuma pallida (Fabaceae) to the Seasonally Dry Forests of Marañon from Peru

Interfaculty Institute for Climate Change and Landscapes - IICACLIMP, National University of Jaen, Jaen - San Ignacio KM 24 - Sect. Yanuyacu – Jaen, Peru. Professional School of Forestry and Environmental Engineering, National University of Jaen, Jaen - San Ignacio KM 24 - Sect. Yanuyacu – Jaen, Peru.
Interfaculty Institute for Climate Change and Landscapes - IICACLIMP, National University of Jaen, Jaen - San Ignacio KM 24 - Sect. Yanuyacu – Jaen, Peru. Research Group on Conservation of Plant Genetic Resources - FITOGEN, National University of Jaen, Jaen - San Ignacio KM 24 - Sect. Yanuyacu – Jaen, Peru.
Professional School of Forestry and Environmental Engineering, National University of Jaen, Jaen - San Ignacio KM 24 - Sect. Yanuyacu – Jaen, Peru
Professional School of Forestry and Environmental Engineering, National University of Jaen, Jaen - San Ignacio KM 24 - Sect. Yanuyacu – Jaen, Peru
Associação para a Conservação da Biodiversidade,- Probiodiversa, Brasil. Graduate Program in Biodiversity and Nature Conservation, Federal University of Juiz de Fora (UFJF), Minas Gerais state, Brazil.
Pedro Ruiz Gallo National University, Juan XXIII N° 391, Lambayeque, Peru.
Endemism Species Distribution Modeling (SDM) Mesquites tree Suitability Refugia Eudicots

Abstract

Several specimens collected along Seasonally Dry Tropical Forests (SDTF) from Peru have been named as Neltuma pallida (Prosopis pallida before); however, morphological and ecological traits are different among these specimens. The update of the taxonomic circumscription and biogeographical delimitation of N. pallida are presented here based on morphological characteristics and Species Distribution Modeling (SDM) based on the principle of Maximum Entropy and 19 bioclimatic variables from historical data. 262 specimens distributed along the SDTF were morphologically evaluated, and 62 specimens corresponded to N. pallida according to the initial taxonomic description. Historical habitat suitability analyses (SDM) revealed significant geographic distribution shifts for N. pallida across climatic periods, highlighting expansions during the Last Glacial Maximum and contractions in subsequent interglacial periods restricted to the Seasonally Dry Forests of Marañon (SDFM). These findings suggest that the SDFM may have provided ecological refugia for N. pallida, allowing it to endure climatic fluctuations over millennia. Thus, only Neltuma populations distributed along SDFM must be named Neltuma pallida due to evident unique morphological characteristics and biogeographic restrictions across time.

References

  1. Antonelli, A., Nylander, JA., Persson, C. & Sanmartín, I. (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences of the United States of America 106 (24): 9749–9754. https://doi.org/10.1073/pnas.0811421106
  2. Barboza, E., Bravo, N., Cotrina-Sanchez, A., Salazar, W., Gálvez-Paucar, D., Gonzales, J.,Saravia, D., Valqui-Valqui, L., Cárdenas, G.P., Ocaña, J.,Cruz-Luis, J. & Arbizu, C.I. (2024) Modeling the current and future habitat suitability of Neltuma pallida in the dry forest of northern Peru under climate change scenarios to 2100. Ecology and Evolution (14): e70158. https://doi.org/10.1002/ece3.70158
  3. Ben Mahmoud, K., Mezzapesa, G.N., Abdelkefi, F. & Perrino, E.V. (2024) Nutritional value and functional properties of an underexploited Tunisian wild beet (Beta macrocarpa Guss.) in relation to soil characteristics. Euro-Mediterranean Journal for Environmental Integration 9: 705–720. https://doi.org/10.1007/s41207-024-00468-5
  4. Blach-Overgaard, A., Kissling, W.D., Dransfield, J., Balslev, H. & Svenning, J.C. (2013) Multimillion-year climatic effects on palm species diversity in Africa. Ecology 94 (11): 2426–2435. https://doi.org/10.1890/12-1577.1.
  5. Bueno, M.L., Pennington, R.T., Dexter, K.G., Kamino, L.H.Y., Pontara, V., Neves, D.M., Ratter, J.A. & Oliveira-Filho, A.T. (2017) Effects of Quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography 40: 403–414. https://doi.org/10.1111/ecog.01860
  6. Burkart, A. (1976) A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). Arnold Arboretum of Harvard University 57 (4): 450–525. https://doi.org/10.5962/p.324722
  7. Burkart, A. & Simpson, B.B. (1977) The genus Prosopis and annotated key to the species of the world. In: Simpson, B.B. (Ed.) Mesquite. Its biology in two Desert Scrub Ecosystems. US/ IBP Synthesis Series 4. Dowden, Hutchinson & Ross, Inc. pp. 201–216.
  8. Catalano, S.A., Vilardi, J.C., Tosto, D. & Saidman, B.O. (2008) Molecular phylogeny and diversification history of Prosopis (Fabaceae: Mimosoideae). Biological Journal of the Linnean Society 93 (3): 621–640. https://doi.org/10.1111/j.1095-8312.2007.00907.x
  9. Carnaval, A.C. & Moritz, C.M. (2008) Historical climate change predicts current biodiversity patterns in the Brazilian Atlantic rainforest. Journal of Biogeography 35 (7): 1187–1201. https://doi.org/10.1111/j.1365-2699.2007.01870.x
  10. Colli-Silva, M., Pirani, J.R. & Zizka, A. (2021) Disjunct plant species in South American seasonally dry tropical forests responded differently to past climatic fluctuations. Frontiers of Biogeography 13 (1): e49882. https://doi.org/10.21425/F5FBG49882
  11. Connor, E. (1986) The role of Pleistocene forest refugia in the evolution and biogeography of tropical biotas. Trends in Ecology & Evolution 1 (6): 165–168. https://doi.org/10.1016/0169-5347(86)90047-9
  12. Decreto Supremo N° 043-2006-AG. (2006) Normas Legales, N°323527. Diario Oficial El Peruano.
  13. Decreto Supremo N° 006-2018-MINAM. (2018) Normas Legales. Diario Oficial El Peruano.
  14. Díaz, C. (1995) Los Algarrobos. Concytec. Perú. 207 pp.
  15. Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D. & Lautenbach, S. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
  16. Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  17. Endler, J.A. (1977) Geographic Variation, Speciation and Clines. (MPB-10), Volume 10. Princeton University Press. https://doi.org/10.2307/j.ctvx5wbdg
  18. ESRI (2011) ArcGIS Desktop (Version 10) [Computer software]. Redlands, CA: Environmental Systems Research Institute.
  19. Ferreyra, R. (1985) Estudio Sistemático de los Algarrobales de la Costa Norte del Perú. Dirección de Investigación Forestal y de Fauna. Lima 11.
  20. Gent, P.R., Danabasoglu, G., Donner, L.J., Holland, M.M., Hunke, E.C., Jayne, S.R., Lawrence, D.M., Neale, R.B., Rasch, P.J., Vertenstein, M., Worley, P.H., Yang, Z. & Zhang, M. (2011) The Community Climate System Model Version 4. Journal of Climate 24 (19): 4973–4991. https://doi.org/10.1175/2011JCLI4083.1
  21. Guzman, B.K., García-Bravo, A., Allauja-Salazar, E.E., Mejía, I.A., Guzmán, C.T. & Oliva, M. (2021) Endemism of woody flora and tetrapod fauna, and conservation status of the inter-Andean Seasonally Dry Tropical Forests of the Marañon valley. Global Ecology and Conservation 28: e01639. https://doi.org/10.1016/j.gecco.2021.e01639
  22. Hernandez, P.A., Graham, C.H., Master, L.L. & Albert, D.L. (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x
  23. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978. https://doi.org/10.1002/joc.1276
  24. Hughes, C.E., Ringelberg, J.J., Lewis, G.P. & Catalano, S.A. (2022) Disintegration of the genus Prosopis L. (Leguminosae, Caesalpinioideae, mimosoid clade). PhytoKeys 205: 147–189. https://doi.org/10.3897/phytokeys.205.75379
  25. Hutchinson, G.E. (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427. https://doi.org/10.1101/SQB.1957.022.01.039
  26. Kees, S.M. (2013) Modelado de nicho ecológico para estimación del área de dispersión de Prosopis hassleri Harms en la provincia de Formosa-Argentina. (Tesis de Doctorado). Universidad Nacional de Formosa. [http://hdl.handle.net/20.500.12123/7121]
  27. Linares-Palomino, R. (2004) Los Bosques Tropicales Estacionalmente Secos: II. Fitogeografía y Composición florística. Arnaldoa 11: 103–138.
  28. Linares-Palomino, R. (2004a) Los bosques tropicales estacionalmente secos: I. El concepto de los bosques secos en el Perú. Arnaldoa 11 (1): 85–102.
  29. Linares-Palomino, R. (2006) Phytogeography and floristics of seasonally dry forests in Peru. In: Pennington, R.T. & Ratter, J.A. (eds.) Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeographyand Conservation. Boca Raton, FL.: CRC Press. pp. 257–279. https://doi.org/10.1201/9781420004496-11
  30. Linares-Palomino, R. & Pennington, R.T. (2007) Lista anotada de plantas leñosas en bosques estacionalmente secos del Perú—una nueva herramienta en Internet para estudios taxonómicos, ecológicos y de biodiversidad. Arnaldoa 14: 149–152.
  31. Linares-Palomino, R., Huamantupa-Chuquimaco, I., Padrón, E., La Torre-Cuadros, M.A., Roncal-Rabanal, M., Choquecota, N., Collazos, L., Elejalde, R., Vergara, N. & Marcelo-Peña, J.L. (2022) Los Bosques Estacionalmente Secos Del Perú: Un Re-análisis De Sus Patrones De Diversidad Y Relaciones florísticas. Revista Peruana de Biología 29 (4): e21613. https://doi.org/10.15381/rpb.v29i4.21613
  32. Marcelo-Peña, J.L., Reynel-Rodríguez, C., Zevallos-Pollito, P., Bulnes-Soriano, F. & Pérez-Ojeda del Arco, A. (2007) Diversidad, composición florística y endemismos en los bosques estacionalmente secos alterados del distrito de Jaén, Perú. Ecología aplicada 6 (1, 2): 9–22. https://doi.org/10.21704/rea.v6i1-2.336
  33. Ministerio del Ambiente. (2018) Mapa nacional de ecosistemas del Perú: Memoria Descriptiva. Lima, Perú.
  34. Navarro Guzmán, M.A., Jove Chipana, C.A. & Ignacio Apaza, J.M. (2020) Modelamiento de nichos ecológicos de flora amenazada para escenarios de cambio climático en el departamento de Tacna-Perú. Colombia Forestal 23 (1): 51–67. https://doi.org/10.14483/2256201X.14866
  35. Neri, A.V., Schaefer, C.G.E.R., Silva, A.F., Souza, A.L., Ferreira-Junior, W.G. & Meira-Neto, J.A.A. (2012) The influence of soils on the floristic composition and community structure of an area of Brazilian cerrado vegetation. Edinburgh Journal of Botany 69: 1–27. https://doi.org/10.1017/S0960428611000382
  36. Osinfor (2013) Modelamiento Espacial de Nichos Ecológicos Para la Evaluación de Presencia de Especies Forestales Maderables en la Amazonía Peruana. Punto & Grafía S.A.C. Lima—Perú.
  37. Otto-Bliesner, B.L., Marshall, S.J., Overpeck, J.T., Miller, G.H., Hu, A. & CAPE Last Interglacial Project members (2006) Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311: 1751–1753. https://doi.org/10.1126/science.1120808
  38. Palacios Romero, A., Rodríguez Laguna, R., Hernández Flores, M.D.L.L., Jiménez Muñoz, E. & Tirado Torres, D. (2016) Distribución potencial de Prosopis laevigata (Humb. et Bonpl. ex Willd) MC Johnston basada en un modelo de nicho ecológico. Revista mexicana de ciencias forestales 7 (34): 35–46. https://doi.org/10.29298/rmcf.v7i34.81
  39. Palacios Romero, A., Jiménez Muñoz, E., Rodríguez Laguna, R. & Razo Zárate, R. (2021) Distribución potencial de Prosopis laevigata (Humb. et Bonpl. ex Willd.) MC Johnst. en el estado de Hidalgo, México. Revista mexicana de ciencias forestales 12 (63): 71–87. https://doi.org/10.29298/rmcf.v12i63.812
  40. Palacios, R.A. (2006) Los Mezquites Mexicanos: Biodiversidad y Distribución Geográfica; Sociedad Argentina de Botánica; Boletín de la Sociedad Argentina de Botánica 41 (1–2): 99–121.
  41. Pasiecznik, N.M,, Felker, P., Harris, P.J., Harsh, L., Cruz, G., Tewari, J.C., Cadoret, K. & Maldonado, L.J. (2001) The Prosopis juliflora-Prosopis pallida complex: a monograph. Vol. 172. Henry Dou­bleday Research Association, Coventry, UK.
  42. Perosa, M., Rojas, F., Villagra, P., Tognelli, M.F., Carrara, R. & Alvarez, J.A. (2014) Distribución potencial de los bosques de Prosopis flexuosa en la Provincia Biogeográfica del Monte (Argentina). Ecología Austral 24 (2): 238–248. https://doi.org/10.25260/EA.14.24.2.0.27
  43. Perrino, E.V., Mahmoud, Z.N.A., Valerio, F., Tomaselli, V., Wagensommer, R.P. & Trani, A. (2023) Synecology of Lagoecia cuminoides L. in Italy and evaluation of functional compounds presence in its water or hydroalcoholic extracts. Scientific Reports 13: 20906. https://doi.org/10.1038/s41598-023-48065-w
  44. Pliscoff, P. & Fuentes-Castillo, T. (2011) Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles. Revista de Geografía Norte Grande 48: 61–79. https://doi.org/10.4067/S0718-34022011000100005
  45. Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  46. Phillips, S.J. & Dudik, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation (Version 3.4.1). Ecography 31: 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  47. Pocheville, A. (2015) The Ecological Niche: History and Recent Controversies. In: Heams, T., Huneman, P., Lecointre, G. & Silberstein, M. (Eds.) Handbook of Evolutionary Thinking in the Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9014-7_26
  48. Quesada-Quirós, M., Acosta-Vargas, L.G., Arias-Aguilar, D. & Rodríguez-González, A. (2017) Modelación de nichos ecológicos basado en tres escenarios de cambio climático para cinco especies de plantas en zonas altas de Costa Rica. Revista Forestal Mesoamericana Kurú 14 (34): 01–12. https://doi.org/10.18845/rfmk.v14i34.2991
  49. Reynel, C., Pennington, R.T. & Särkinen, T. (2013) Cómo se formó la diversidad ecológica del Perú. Biblioteca Nacional del Perú, Lima, Perú.
  50. Reynoso Santos, R., Pérez Hernández, M.J., López Báez, W., Hernández Ramos, J., Muñoz Flores, H.J., Cob Uicab, J.V. & Reynoso Santos, M.D. (2018) El nicho ecológico como herramienta para predecir áreas potenciales de dos especies de pino. Revista Mexicana de Ciencias Forestales 9 (48): 47–68. https://doi.org/10.29298/rmcf.v8i48.114
  51. Rzedowski, J. (1988) Análisis de la distribución geográfica del complejo Prosopis (Leguminosae, Mimosoideae) en Norteamérica. Acta Botánica Mexicana 3: 7–19. [https://www.redalyc.org/articulo.oa?id=57400302]
  52. Salazar, P.C., Navarro-Cerrillo, R.M., Ancajima, E., Duque Lazo, J., Rodríguez, R., Ghezzi, I. & Mabres, A. (2018) Effect of climate and ENSO events on Prosopis pallida forests along a climatic gradient. Forestry 91 (5): 165–177. https://doi.org/10.1093/forestry/cpy014
  53. Salazar Zarzosa, P.C., Mendieta-Leiva, G., Navarro Cerrillo, R., Cruz, G., Grados, N. & Villar, R. (2021) An ecological overview of Prosopis pallida, one of the most adapted dryland species to extreme climate events. Journal of Arid Environments. 193 (1): 104576. https://doi.org/10.1016/j.jaridenv.2021.104576
  54. Sánchez, D., Silva, L., Murillo-Domen, Y. & Huamán-Mera, A. (2021) Influencia del pH y sales del suelo en la estructura y composición de un Bosque Tropical Estacionalmente Seco del Perú. Revista Científica Pakamuros 9 (4): 148–159. https://doi.org/10.37787/pakamuros-unj.v9i4.244
  55. Shakun, J.D., Clark, P.U., He, F., Marcott, S.A., Mix, A.C., Liu, Z., Otto-Bliesner, B., Schmittner, A. & Bard, E. (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484 (7392): 49–54. https://doi.org/10.1038/nature10915
  56. Shcheglovitova, M. & Anderson, R. (2013) Estimating optimal complexity for ecological niche models: A jackknife approach for species with 43 small sample sizes. Ecological Modelling 269: 9–17. https://doi.org/10.1016/j.ecolmodel.2013.08.011
  57. Sun, Y., Y. Sun, S., Yao, M.A., Akram, W., Hu, L., Dong, H., Li, M., Wei, H., Gong, S., Xie, M., Aqeel, J., Ran, Degen, A.A., Guo, Q. & Deng, J. (2021) Impact of climate change on plant species richness across drylands in China: From past to present and into the future. Ecological Indicators 132: 108288. https://doi.org/10.1016/j.ecolind.2021.108288
  58. Taylor, K.E., Stouffer, R.J. & Meehl, G.A. (2012) An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93: 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
  59. Testo, W.L., Sessa, E. & Barrington, D.S. (2019) The rise of the Andes promoted rapid diversification in Neotropical Phlegmariurus (Lycopodiaceae). New Phytologist 222: 604–613. https://doi.org/10.1111/nph.15544
  60. von Humboldt, F.W.H.A., Bonpland, A.J.A. & Kunth, C.S. (1823) Prosopis pallida. Nova Genera et Species Plantarum (quarto ed.) 6: 309.
  61. von Willdenow, C.L. (1806) Acacia pallida. In: Species Plantarum. Editio quarta. Vol. 4 (2). pp. 1059.
  62. Vásquez Núñez, L., Escurra Puicón, J. & Huamán Mera, A. (2009) Cinco especies Peruanas de Pros­opis nuevas para la ciencia. Sciéndo 12 (1): 68–87.
  63. Vásquez Núñez, L., Escurra Puicón, J. & Huamán Mera, A. (2010) Los Algarrobos del Perú. INCAGRO. Universidad Nacional. Pedro Ruiz Gallo y Escuela de Postgrado UNPRG, Lambayeque—Perú. 126 pp.
  64. Weberbauer, A. (1945) El mundo Vegetal de los Andes peruanos. Lima: Ministerio de Agricultura, 776 pp.
  65. Werneck, F.P., Costa, G.C., Colli, G.R., Prado, D.E. & Sites Jr, J.W. (2011) Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidencegeb. Global Ecology and Biogeography 20: 272–288. https://doi.org/10.1111/j.1466-8238.2010.00596.x
  66. Werneck, F.P., Nogueira, C., Colli, G.R., Sites-Junior, J.W. & Costa, G.C. (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness, and conservation in a biodiversity hotspot. Journal of Biogeography 39: 1695–1706. https://doi.org/10.1111/j.1365-2699.2012.02715.x

How to Cite

Huamán-Mera, A., Murillo-Domen, Y.S., Amaya-Reyes, D.Z., Saucedo-Burga, F.Y., Villa, P.M. & Vásquez-Núñez, L.P. (2025)

Update of the taxonomic circumscription and biogeographical delimitation range of Neltuma pallida (Fabaceae) to the Seasonally Dry Forests of Marañon from Peru

. Phytotaxa 691 (1): 1–18. https://doi.org/10.11646/phytotaxa.691.1.1