Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-10-23
Page range: 233-246
Abstract views: 147
PDF downloaded: 7

Trichoderma thailandense sp. nov. (Hypocreales, Hypocreaceae), a new species from Thailand

Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand. Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand.
Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand. Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand.
Faculty of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand
Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
Faculty of Agriculture Innovation and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima, 30000, Thailand
Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
Ascomycota microfungi multi-gene phylogeny taxonomy tropical area Fungi

Abstract

A new species of microfungus, described herein as Trichoderma thailandense was isolated from the pileus surface of oyster mushroom and upland black rice samples in Thailand. This species is described using morphological characteristics and molecular multi-gene analyses. Based on multi-gene phylogenetic analyses of the internal transcribed spacer (ITS) region of the rDNA, RNA polymerase subunit II gene sequences (rpb2), and translation elongation factor 1-α (tef1-α) gene revealed that the position of T. thailandense is well-supported within Harzianum clade of the genus Trichoderma, but distinct from other all other known species. A full description, illustrations and a phylogenetic tree showing the position of T. thailandense are provided.

References

  1. Arnold, A.E., Maynard, Z., Gilbert, G.S., Coley, P.D. & Kursar, T.A. (2000) Are tropical fungal endophytes hyperdiverse?. Ecology Letters 3: 267–274. https://doi.org/10.1046/j.1461-0248.2000.00159.x
  2. Asghar, W. & Kataoka, R. (2021) Effect of co-application of Trichoderma spp. with organic composts on plant growth enhancement, soil enzymes and fungal community in soil. Archives of Microbiology 203: 4281–4291. https://doi.org/10.1007/s00203-021-02413-4
  3. Bastakoti, S., Belbase, S., Manandhar, S. & Arjyal, C. (2017) Trichoderma species as Biocontrol Agent against Soil Borne Fungal Pathogens. Nepal Journal of Biotechnology 2: 39–45.
  4. Baturo-Cieśniewska, A., Pusz, W. & Patejuk, K. (2020) Problems, limitations, and challenges in species identification of ascomycota members on the basis of its regions. Acta Mycologica 55: e5512. https://doi.org/10.5586/am.5512
  5. Bissett, J., (1984) A revision of the genus Trichoderma. I. Section Longibrachiatum sec. nov. Canadian Journal of Botany 62: 924–931.
  6. Bissett, J., Szakacs, G., Nolan, C.A., Druzhinina, I., Gradinger, C. & Kubicek, C.P. (2003) New species of Trichoderma from Asia. Canadian Journal of Botany 81: 570–586. https://doi.org/10.1139/b03-051
  7. Błaszczyk, L., Strakowska, J., Chełkowski, J., Gąbka-Buszek, A. & Kaczmarek, J. (2016) Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization. Journal of Applied Genetics 57: 397–407. https://doi.org/10.1007/s13353-015-0326-1
  8. Bridžiuvienė, D., Raudonienė, V., Švedienė, J., Paškevičius, A., Baužienė, I., Vaitonis, G., Šlepetienė, A., Šlepetys, J. & Kačergius, A. (2022) Impact of Soil Chemical Properties on the Growth Promotion Ability of Trichoderma ghanense, T. tomentosum and Their Complex on Rye in Different Land-Use Systems. Journal of Fungi 8: e85. https://doi.org/10.3390/jof8010085
  9. Carbone, I. & Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556. https://doi.org/10.1080/00275514.1999.12061051
  10. Cai, F. & Druzhinina, I.S. (2021) In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Diversity 107: 1–69. https://doi.org/10.1007/s13225-020-00464-4
  11. Cao, Z.J., Qin, W.T., Zhao, J., Liu, Y., Wang, S.X. & Zheng, S.Y. (2022) Three new Trichoderma Species in Harzianum clade associated with the contaminated substrates of edible fungi. Journal of Fungi 8: e1154. https://doi.org/10.3390/jof8111154
  12. Cao, Z.J., Zhao, J., Liu, Y., Wang, S.X., Zheng, S.Y. & Qin, W.T. (2024) Diversity of Trichoderma species associated with green mold contaminating substrates of Lentinula edodes and their interaction. Frontiers in Microbiology 14: e1288585. https://doi.org/10.3389/fmicb.2023.1288585
  13. Chaverri, P., Branco-Rocha, F., Jaklitsch, W., Gazis, R., Degenkolb, T. & Samuels, G.J. (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107: 558–590. https://doi.org/10.3852/14-147
  14. Chaverri, P., Gazis, R.O. & Samuels, G.J. (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia 103: 139–151. https://doi.org/10.3852/10-078
  15. Chaverri, P. & Samuels, G.J. (2003) Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores. Studies in Mycology 48: 1–116.
  16. Chen, J., Zhou, L., Din, I.U., Arafat, Y., Li, Q., Wang, J., Wu, T., Wu, L., Wu, H., Qin, X., Pokhrel, G.R., Lin, S. & Lin, W. (2021) Antagonistic activity of Trichoderma spp. against Fusarium oxysporum in rhizosphere of Radix pseudostellariae triggers the expression of host defense genes and improves its growth under long-term monoculture system. Frontiers in Microbiology 12: e579920. https://doi.org/10.3389/fmicb.2021.579920
  17. Chen, K.& Zhuang, W.Y. (2017) Discovery from a large-scaled survey of Trichoderma in soil of China. Scientific Reports 7: e9090. https://doi.org/10.1038/s41598-017-07807-3
  18. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. https://doi.org/10.1038/nmeth.2109
  19. Dotson, B.R., Soltan, D., Schmidt, J., Areskoug, M., Rabe, K., Swart, C., Widell, S. & Rasmusson, A.G. (2018) The antibiotic peptaibol alamethicin from Trichoderma permeabilises Arabidopsis root apical meristem and epidermis but is antagonised by cellulase-induced resistance to alamethicin. BMC Plant Biology 18: e165. https://doi.org/10.1186/s12870-018-1370-x
  20. Druzhinina, I.S., Kubicek, C.P., Komo-Zelazowska, M., Mulaw, T.B. & Bissett, J. (2010) The Trichoderma harzianum demon: Complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evolutionary Biology 10: e94. https://doi.org/10.1186/1471-2148-10-94
  21. Edgar, R.C. (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340
  22. Felsenstein, J. (1985) Confidence intervals on phylogenetics: an approach using bootstrap. Evolution 39: 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  23. Gams, W. & Bissett, J. (2002) Morphology and identification of Trichoderma. Trichoderma and gliocladium, Oxfordshire United Kingdom, 278 pp.
  24. Gateta, T., Nacoon, S., Seemakram, W., Ekprasert, J., Theerakulpisut, P., Sanitchon, J., Suwannarach, N. & Boonlue, S. (2023) The potential of endophytic fungi for enhancing the growth and accumulation of phenolic compounds and anthocyanin in Maled Phai rice (Oryza sativa L.). Journal of Fungi 9: e937. https://doi.org/10.3390/jof9090937
  25. Gu, X., Wang, R., Sun, Q., Wu, B. & Sun, J.Z. (2020) Four new species of Trichoderma in the Harzianum clade from northern China. MycoKeys 73: 109–132. https://doi.org/10.3897/MYCOKEYS.73.51424
  26. Hall, B.G. (2013) Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution 30: 1229–1235. https://doi.org/10.1093/molbev/mst012
  27. Inglis, P.W., Mello, S.C.M., Martins, I., Silva, J.B.T., Macêdo, K., Sifuentes, D.N. & Valadares-Inglis, M.C. (2020) Trichoderma from Brazilian garlic and onion crop soils and description of two new species: Trichoderma azevedoi and Trichoderma peberdyi. PLoS ONE 15: e0228485. https://doi.org/10.1371/journal.pone.0228485
  28. Irinyi, L., Serena, C., Garcia-Hermoso, D., Arabatzis, M., Desnos-Ollivier, M., Vu, D., Cardinali, G., Arthur, I., Normand, A.C., Giraldo, A., Da Cunha, K.C., Sandoval-Denis, M., Hendrickx, M., Nishikaku, A.S., De Azevedo Melo, A.S., Merseguel, K.B., Khan, A., Parente Rocha, J.A., Sampaio, P., Da Silva Briones, M.R., E Ferreira, R.C., De Medeiros Muniz, M., Castañón-Olivares, L.R., Estrada-Barcenas, D., Cassagne, C., Mary, C., Duan, S.Y., Kong, F., Sun, A.Y., Zeng, X., Zhao, Z., Gantois, N., Botterel, F., Robbertse, B., Schoch, C., Gams, W., Ellis, D., Halliday, C., Chen, S., Sorrell, T.C., Piarroux, R., Colombo, A.L., Pais, C., De Hoog, S., Zancopé-Oliveira, R.M., Taylor, M.L., Toriello, C., De Almeida Soares, C.M., Delhaes, L., Stubbe, D., Dromer, F., Ranque, S., Guarro, J., Cano-Lira, J.F., Robert, V., Velegraki, A. & Meyer, W. (2015) International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database - The quality controlled standard tool for routine identification of human and animal pathogenic fungi. Medical Mycology 53: 313–337. https://doi.org/10.1093/mmy/myv008
  29. Islam, M.R., Chowdhury, R., Roy, A.S., Islam, M.N., Mita, M.M., Bashar, S., Saha, P., Rahat, R.A., Hasan, M., Akter, M.A., Alam, M.Z. & Latif, M.A. (2023) Native Trichoderma Induced the Defense-Related Enzymes and Genes in Rice against Xanthomonas oryzae pv. oryzae (Xoo). Plants 12: e1864. https://doi.org/10.3390/plants12091864
  30. Jaklitsch, W.M. (2009) European species of Hypocrea Part I. The green-spored species. Studies in Mycology 63: 1–91. https://doi.org/10.3114/sim.2009.63.01
  31. Jaklitsch, W.M. (2011) European species of Hypocrea part II: Species with hyaline ascospores. Fungal Diversity 48: 1–250. https://doi.org/10.1007/s13225-011-0088-y
  32. Jaklitsch, W.M., Kubicek, C.P. & Druzhinina, I.S. (2008) Three European species of Hypocrea with reddish brown stromata and green ascospores. Mycologia 100: 796–815. https://doi.org/10.3852/08-039
  33. Jaklitsch, W.M. & Voglmayr, H. (2013) New combinations in Trichoderma (Hypocreaceae, Hypocreales). Mycotaxon 126: 143–156. https://doi.org/10.5248/126.143
  34. Jaklitsch, W.M. & Voglmayr, H. (2015) Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Studies in Mycology 80: 1–87. https://doi.org/10.1016/j.simyco.2014.11.001
  35. Kappel, L., Kosa, N. & Gruber, S. (2022) The Multilateral Efficacy of Chitosan and Trichoderma on Sugar Beet. Journal of Fungi 8: e137. https://doi.org/10.3390/jof8020137
  36. Lui, Y.J., Whelen, S. & Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  37. Li, Q.R., Tan, P., Jiang, Y.L., Hyde, K.D., Mckenzie, E.H.C., Bahkali, A.H., Kang, J.C. & Wang, Y. (2013) A novel Trichoderma species isolated from soil in Guizhou, T. guizhouense. Mycological Progress 12: 167–172. https://doi.org/10.1007/s11557-012-0821-2
  38. Mayo-Prieto, S., Marra, R., Vinale, F., Rodríguez-González, Á., Woo, S.L., Lorito, M., Gutiérrez, S. & Casquero, P.A. (2019) Effect of Trichoderma velutinum and Rhizoctonia solani on the metabolome of bean plants (Phaseolus vulgaris L.). International Journal of Molecular Sciences 20: e549. https://doi.org/10.3390/ijms20030549
  39. Niu, C., Kebede, H., Auld, D.L., Woodward, J.E., Burow, G. & Wright, R.J. (2008) A safe inexpensive method to isolate high quality plant and fungal DNA in an open laboratory environment. African Journal of Biotechnology 7: 2818–2822. http://www.academicjournals.org/AJB
  40. Nuangmek, W., Aiduang, W., Kumla, J., Lumyong, S. & Suwannarach, N. (2021) Evaluation of a newly identified endophytic fungus, Trichoderma phayaoense for plant growth promotion and biological control of gummy stem blight and wilt of muskmelon. Frontiers in Microbiology 12: e634772. https://doi.org/10.3389/fmicb.2021.634772
  41. Oskiera, M., Szczech, M. & Bartoszewski, G. (2015) Molecular identification of Trichoderma strains collected to develop plant growth-promoting and biocontrol agents. Journal of Horticultural Research 23: 75–86. https://doi.org/10.2478/johr-2015-0010
  42. Pathak, P., Bhardwaj, N.K. & Singh, A.K. (2014) Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier wastepaper recycling. Applied Biochemistry and Biotechnology 172: 3776–3797. https://doi.org/10.1007/s12010-014-0758-9
  43. Phookamsak, R., Hyde, K.D., Jeewon, R., Bhat, D.J., Jones, E.B.G., Maharachchikumbura, S.S.N., Raspé, O., Karunarathna, S.C., Wanasinghe, D.N., Hongsanan, S., Doilom, M., Tennakoon, D.S., Machado, A.R., Firmino, A.L., Ghosh, A., Karunarathna, A., Mešić, A., Dutta, A.K., Thongbai, B., Devadatha, B., Norphanphoun, C., Senwanna, C., Wei, D., Pem, D., Ackah, F.K., Wang, G-N., Jiang, H-B., Madrid, H., Lee, H.B., Goonasekara, I.D., Manawasinghe, I.S., Kušan, I., Cano, J., Gené, J., Li, J-F., Das, K., Acharya, K.A., Raj, K.N.A., Latha, K.P.D., Chethana, K.W.T., He, M-Q., Dueñas, M., Jadan, M., Martín, M.P., Samarakoon, M.C., Dayarathne, M.C., Raza, M., Park, M.S., Telleria, M.T., Chaiwan, N., Matočec, N., de Silva, N.I., Pereira, O.L., Singh, P.N., Manimohan, P., Uniyal, P., Shang, Q-J., Bhatt, R.P., Perera, R.H., Alvarenga, R.L.M., Nogal-Prata, S., Singh, S.K., Vadthanarat, S., Oh, S-Y., Huang, S-K., Rana, S., Konta, S., Paloi, S., Jayasiri, S.C., Jeon, S.J., Mehmood, T., Gibertoni, T.B., Nguyen, T.T.T., Singh, U., Thiyagaraja, V., Sarma, V.V., Dong, W., Yu, X-D., Lu, Y-Z., Lim, Y.W., Chen, Y., Tkalčec, Z., Zhang, Z-F., Luo, Z-L., Daranagama, D-A., Thambugala, K.M., Tibpromma, S., Camporesi, E., Bulgakov, T.S., Dissanayake, A.J., Senanayake, I.C., Dai, D-Q., Tang, L-Z., Khan, S., Zhang, H., Promputtha, I., Cai, L., Chomnunti, P., Zhao, R-N., Lumyong, S., Boonmee, S., Wen, T-C., Mortimer, P.E. & Xu, J. (2019) Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity 95: 1–273. https://doi.org/10.1007/s13225-019-00421-w
  44. Prameeladevi, T., Kamil, D., Toppo, R.S. & Choudhary, S.P. (2021) Trichoderma dumbbelliforme sp. nov. an undescribed fungus of order Hypocreales from India. Phytotaxa 520: 285–295. https://doi.org/10.11646/phytotaxa.520.3.8
  45. Qiao, M., Du, X., Zhang, Z., Xu, J.P. & Yu, Z.F. (2018) Three new species of soil-inhabiting Trichoderma from southwest China. MycoKeys 44: 63–80. https://doi.org/10.3897/mycokeys.44.30295
  46. Rambaut, A. (2012) FigTree. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 8 November 2023)
  47. Rakeman, J.L., Bui, U., LaFe, K., Chen, Y.C., Honeycutt, R.J. & Cookson, B.T. (2005) Multilocus DNA sequence comparisons rapidly identify pathogenic molds. Journal of Clinical Microbiology 43: 3324–3333. https://doi.org/10.1128/JCM.43.7.3324-3333.2005
  48. Rifai, M.A. (1969) A revision of the genus Trichoderma. Mycology Paper 116: 1–56.
  49. Rodríguez, C.H.M., Evans, H.C., de Abreu, L.M., de Macedo, D.M., Ndacnou, M.K., Bekele, K.B. & Barreto, R.W. (2021) New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. Scientific Reports 11: 19229. https://doi.org/10.1038/s41598-021-84111-1
  50. Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  51. Samuels, G.J. (2006) Trichoderma: Systematics, the sexual state, and ecology. Phytopathology 96: 195–206. https://doi.org/10.1094/PHYTO-96-0195
  52. Sánchez-Montesinos, B., Santos, M., Moreno-Gavíra, A., Marín-Rodulfo, T., Gea, F.J. & Diánez, F. (2021) Biological control of fungal diseases by trichoderma aggressivum f. Europaeum and its compatibility with fungicides. Journal of Fungi 7: e598. https://doi.org/10.3390/jof7080598
  53. Sani, M.N.H., Hasan, M., Uddain, J. & Subramaniam, S. (2020) Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced N-P-K fertilization. Annals of Agricultural Sciences 65: 107–115. https://doi.org/10.1016/j.aoas.2020.06.003
  54. Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
  55. Suebrasri, T., Somteds, A., Harada, H., Kanokmedhakul, S., Jogloy, S., Ekprasert, J., Lumyong, S. & Boonlue, S. (2020) Novel endophytic fungi with fungicidal metabolites suppress sclerotium disease. Rhizosphere 16: e100250. https://doi.org/10.1016/j.rhisph.2020.100250
  56. Swain, H., Adak, T., Mukherjee, A.K., Sarangi, S., Samal, P., Khandual, A., Jena, R., Bhattacharyya, P., Naik, S.K., Mehetre, S.T., Baite, M.S., Kumar, M.S. & Zaidi, N.W. (2021) Seed biopriming with Trichoderma strains isolated from tree bark improves plant growth, antioxidative defense system in rice and enhance straw degradation capacity. Frontiers in Microbiology 12: e633881. https://doi.org/10.3389/fmicb.2021.633881
  57. White, T.J., Burns, T., Lee, S. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp. 315–322.
  58. Wijayawardene, N.N., Hyde, K.D., Dai, D.Q., Sánchez-García, M., Goto, B.T., Saxena, R.K., Erdoğdu, M., Selçuk, F., Rajeshkumar, K.C., Aptroot, A., Błaszkowski, J., Boonyuen, N., da Silva, G., de Souza, F.A., Dong, W., Ertz, D., Haelewaters, D., Jones, E.B.G., Karunarathna, S.C., Kirk, P.M., Kukwa, M., Kumla, J., Leontyev, D.V., Lumbsch, H.T., Maharachchikumbura, S.S.N., Marguno, F., Martínez-Rodríguez, P., Mešić, A., Monteiro, J.S., Oehl, F., Pawłowska, J., Pem, D., Pfliegler, W.P., Phillips, A.J.L., Pošta, A., He, M.Q., Li, J.X., Raza, M., Sruthi, O.P., Suetrong, S., Suwannarach, N., Tedersoo, L., Thiyagaraja, V., Tibpromma, S., Tkalčec, Z., Tokarev, Y.S., Wanasinghe, D.N., Wijesundara, D.S.A., Wimalaseana, S.D.M.K., Madrid, H., Zhang, G.Q., Gao, Y., Sánchez-Castro, I., Tang, L.Z., Stadler, M., Yurkov, A. & Thines, M. (2022) Outline of Fungi and fungus-like taxa – 2021. Mycosphere 13: 53–453. https://doi.org/10.5943/mycosphere/13/1/2
  59. Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J. & Chen, J. (2023) Trichoderma and its role in biological control of plant fungal and nematode disease. Frontiers in Microbiology 14: e1160551. https://doi.org/10.3389/fmicb.2023.1160551
  60. Ye, C., Jing, T., Sha, Y., Mo, M. & Yu, Z. (2023) Two new Trichoderma species (Hypocreales, Hypocreaceae) isolated from decaying tubers of Gastrodia elate. MycoKeys 99: 187–207. https://doi.org/10.3897/mycokeys.99.109404
  61. Zhang, C., Zhang, B., Yang, X., Naicker, O. & Zhao, L. (2022) brown rot disease caused by Trichoderma hamatum on the edible lily, Lilium leichtlinii var. maximowiczii. Chiang Mai Journal of Science 49: 1500–1508. https://doi.org/10.12982/CMJS.2022.103
  62. Zhang, H., Zhao, Q., Wang, Z., Wang, L., Li, X., Fan, Z., Zhang, Y., Li, J., Gao, X., Shi, J. & Chen, F. (2021) Effects of nitrogen fertilizer on photosynthetic characteristics, biomass, and yield of wheat under different shading conditions. Agronomy 11: e1989. https://doi.org/10.3390/agronomy11101989
  63. Zhang, G.Z., Yang, H.T., Zhang, X.J., Zhou, F.Y., Wu, X.Q., Xie, X.Y., Zhao, X.Y. & Zhou, H.Z. (2022) Five new species of Trichoderma from moist soils in China. MycoKeys 87: 133–157. https://doi.org/10.3897/MYCOKEYS.87.76085
  64. Zhao, R., Chen, K.Y., Mao, L.J. & Zhang, C.L. (2024) Eleven new species of Trichoderma (Hypocreaceae, Hypocreales) from China. Mycology 1–30. https://doi.org/10.1080/21501203.2024.2330400
  65. Zhao, R., Mao, L.J. & Zhang, C.L. (2023) Three new species of Trichoderma (Hypocreales, Hypocreaceae) from soils in China. MycoKeys 97: 21–40. https://doi.org/10.3897/mycokeys.97.101635
  66. Zhao, Y.Z., Zhang, Z.F., Cai, L., Peng, W.J. & Liu, F. (2018) Four new filamentous fungal species from newly-collected and hive-stored bee pollen. Mycosphere 9: 1089–1116. https://doi.org/10.5943/mycosphere/9/6/3
  67. Zheng, H., Qiao, M., Lv, Y., Du, X., Zhang, K.Q. & Yu, Z. (2021) New species of Trichoderma isolated as endophytes and saprobes from Southwest China. Journal of Fungi 7: e467. https://doi.org/10.3390/jof7060467
  68. Zhu, Z.X. & Zhuang, W.Y. (2015) Trichoderma (Hypocrea) species with green ascospores from China. Persoonia 34: 113–129. https://doi.org/10.3767/003158515X686732