Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-06-26
Page range: 221-230
Abstract views: 48
PDF downloaded: 65

Geopyxis carolinae sp. nov. (Pezizomycetes, Ascomycota) from Mexico

Tecnológico Nacional de México. Instituto Tecnológico de Ciudad Victoria. Blvd. Emilio Portes Gil #1301Pte., 87010, Ciudad Victoria, Tamaulipas, México
Tecnológico Nacional de México. Instituto Tecnológico de Ciudad Victoria. Blvd. Emilio Portes Gil #1301Pte., 87010, Ciudad Victoria, Tamaulipas, México
Tecnológico Nacional de México. Instituto Tecnológico de Ciudad Victoria. Blvd. Emilio Portes Gil #1301Pte., 87010, Ciudad Victoria, Tamaulipas, México
Department of Urban Bioresources, Faculty of Urban and Aquatic Bioresources, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
Instituto Politécnico Nacional, Escuela Nacional de Ciencias Bilógicas, Laboratorio de Micología, Prolongación de Carpio y Plan de Ayala, Santo Tomás, Alcaldía Miguel Hidalgo, 11340 Cd. Mx., México
new species Abies forest Ectomycorrhizal fungi Pyronemataceae Pyrophylls Fungi

Abstract

Geopyxis is an ectomycorrhizal genus found in temperate forests. The members form yellow and orange to brown apothecia that range from 3–25 mm in diameter. Its ascospores are smooth to finely verrucous. The specimen collected from Mount Tlaloc, Texcoco, State of Mexico, was identified as Geopyxis carolinae sp. nov. This species typically forms sessile apothecia, cupuliform to discoid, and its ascospores are the largest [17–23(25) × 10–12 µm] within the genus. The species was found growing on a burnt ground associated with Abies religiosa. Multi-gene phylogenetic analyses inferred from ITS and LSU sequence data confirmed that Geopyxis carolinae is distinct from other Geopyxis spp. The new species is described, illustrated, and compared with similar taxa based on molecular and morphological data.

References

  1. Astudillo-Sánchez, C.C., Villanueva-Díaz, J., Endara-Agramont, A.R., Nava-Bernal, G.E. & Gómez-Albores, M.A. (2017) Influencia climática en el reclutamiento de Pinus hartwegii Lindl. del ecotono bosque-pastizal alpino en monte Tláloc, México. Agrociencia 51: 105–118.
  2. Barrales-Brito, E., Paz-Pellat, F., Etchevers-Barra, J.D., Hidalgo-Moreno, C. & Velázquez-Rodríguez, A. (2020) Dinámica de carbono en agregados del suelo con diferentes tipos de uso de suelo en el monte Tláloc, Estado de México. Tierra Latinoamericana 38: 275–288. https://doi.org/10.28940/terra.v38i2.680
  3. Chacón, S. & Guzmán, G. (1985) Ascomycetes poco conocidos en México, II. Discomycetes. Revista Mexicana de Micología 1: 331–334.
  4. Chio, R.E., Frutis, I. & Guzmán, G. (1988) Hongos del Estado de México, I. Especies citadas en la bibliografía, 1a. Parte. Ascomycetes, Tremellales y Aphyllophorales. Revista Mexicana de Micología 4: 97–113.
  5. Ekanayaka, A.H., Hyde, K.D., Jones, E.B.G. & Zhao, Q. (2018) Taxonomy and phylogeny of operculate discomycetes: Pezizomycetes. Fungal Diversity 90: 161–243. https://doi.org/10.1007/s13225-018-0402-z
  6. Frandsen, P.B., Calcott, B., Mayer, C. & Lanfear, R. (2015) Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates. BMC Evolutionary Biology 15 (1): 1–17. https://doi.org/10.1186/s12862-015-0283-7
  7. Fries, E.M. (1822) Systerna Mycologicum. 2. Lundae.
  8. GenBank. (2022) National Center for Biotechnology Information. Available from: http://www.ncbi.nlm.nih.gov/genbak/ (accessed 31 December 2021)
  9. Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series 41: 95–98.
  10. Hansen K, Perry, B.A., Dranginis, A.W. & Pfister, D.H. (2013) A phylogeny of the highly diverse cup-fungus family Pyronemataceae (Pezizomycetes, Ascomycota) clarifies relationships and evolution of selected life history traits. Molecular Phylogenetics and Evolution 67: 311–335. https://doi.org/10.1016/j.ympev.2013.01.014
  11. Höhnel, F.X.R. von (1906) Mycologische Fragmente CVI-CXVII. Annales Mycologici 3: 548–560.
  12. Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17 (8): 754– 755. https://doi.org/10.1093/bioinformatics/17.8.754
  13. Index Fungorum. (2022) An international project to index all formal names in the Fungi Kingdom. Available from: https://www.indexfungorum.org/names/Names.asp (accessed 31 January 2024).
  14. Katoh, K. & Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software version 7: improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010
  15. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30 (14): 3059–3066. https://doi.org/10.1093/nar/gkf436
  16. Katoh, K., Rozewicki, J. & Yamada, K.D. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20 (4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  17. Kimbrough, J.W. & Gibson, J.L. (1990) Ultrastructural and cytological observations of apothecial tissues of Geopyxis carbonaria (Pezizales, Ascomycetes). Canadian Journal of Botany 68: 243–257. https://doi.org/10.1139/b90-034
  18. Kornerup, A. & Wanscher, H. (1978) Methuen Handbook of Colour, 7th Edition. Eyre Metheun. London, UK. 227.
  19. Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. (2014) Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology 14: 1–14 (1). https://doi.org/10.1186/1471-2148-14-82
  20. Lumbsch, H.T. & Huhndorf, S.M. (2010) Myconet Vol. 14 Part One. Outline Ascomycota—2009. Fieldiana Life and Earth Sciencies 1: 1–42. https://doi.org/10.3158/1557.1
  21. Madriz-Valdovinos, D., Raymundo, T., Gutiérrez, A., Sánchez Flores, M., Coronado, M.L. & Esqueda, M. (2022) Pezizales (Ascomycota) asociados a bosque de pino-ecino en Yécora, Sonora, México. Acta Botanica Mexicana 129: e2083. https://doi.org/10.21829/abm129.2022.2083
  22. Martínez-González, C.R., Ramírez-Mendoza, R., Jiménez- Ramírez, J., Gallegos-Vázquez, C. & Luna-Vega, I. (2017) Improved method for genomic DNA extraction for Opuntia Mill. (Cactaceae). Plant Methods 13: 1–10. https://doi.org/10.1186/s13007-017-0234-y
  23. Müller, K., Quandt, D., Müller, J. & Neinhuis, C. (2005) PhyDE®- Phylogenetic data editor. Program distributed by the authors, version 10.0. Available from: https://www.phyde.de (accessed December, 2021).
  24. Persoon, C.H. (1822) Mycologia Europeae seu completa ómnium fungorum in variis Europae regionibus detectorum enumeratio, methodo naturali disposita 1. Erlangae.
  25. Rambaut, A. (2014) FigTree version 1.4.2. Available at: https://tree.bio.ed.ac.uk/software/figtree/ (accessed 31 December 2021).
  26. Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) Tracer version 1.6. Available from: https://beast.bio.ed.ac.uk/Tracer (accessed 31 December 2021)
  27. Raymundo, T., Aguirre-Acosta, E., Bautista-Hernández, S., Contreras-Pacheco, M., Garma, P., León-Avedaño, H. & Valenzuela, R. (2013) Catálogo de los Ascomycota en los bosques de Santa Martha Latuvi, Sierra Norte, Oaxaca, México. Boletín de la Sociedad Micológica de Madrid 37: 13–29.
  28. Raymundo, T., Bautista-Hernández, S., Aguirre-Acosta, E., Aguilar, S. & Valenzuela, R. (2012) Nuevos registros de Pezizales (Pezizomycetes, Ascomycota) en México. Boletín de la Sociedad Micológica de Madrid 36: 13–21.
  29. Rifai, M.A. (1968) The Australasian Pezizales in the Herbarium of the Royal Botanic Gardens Kew. Amsterdam: N.V. Noord-Hollandsche Uitgevers Maatschappij. 195 pp.
  30. Saccardo, P.A. (1889) Discomyceteae et Phymatosphaeriaceae. Sylloge Fungorum 8: 1–1143.
  31. Sánchez-González, A. & López-Mata, L. (2003) Clasificación y ordenación de la vegetación del norte de la Sierra Nevada, a lo largo del gradiente altitudinal. Anales del Instituto de Biología. Serie Botánica 74 (1): 47–71.
  32. Sánchez-Sánchez, C., Paz-Pellat, F., Hernández-de la Rosa, P., Velázquez-Rodríguez, A., Vibrans, H., Vargas-Hernández, J., Valdez-Hernández, J.I. & Valdez-Lazalde, J.R. (2021) Riqueza de especies y tipos funcionales: su relación en bosques de oyamel del Monte Tláloc, Estado de México. Madera y Bosques 27 (4): e2742427 https://doi.org/10.21829/myb.2021.2742427
  33. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  34. Turnau, K. (1984) Investigation on post-fire Discomycetes: Geopyxis rehmii sp. nov. and G. carbonaria (Alb. & Schw. ex Fr.) Sacc. Nova Hedwigia 40: 157–170.
  35. Ulloa, M. & Hanlin, R.T. (2006) Nuevo diccionario ilustrado de Micología. APS Press. St. Paul, USA. 615 pp.
  36. Villanueva-Díaz, J., Vázquez-Selem, L., Gómez-Guerrero, A., Cerano-Paredes, J., Aguirre-González, N.A. & Franco-Ramos, O. (2016) Potencial dendrocronológico de Juniperus montícola Martínez en Monte Tláloc. Revista Fitotecnia Mexicana 39 (2): 175–185. https://doi.org/10.35196/frm.2016.2.175-185
  37. Vrålstad, T, Holst-Jensen, A. & Schumacher, T. (1998) The postfire discomycete Geopyxis carbonaria (Ascomycota) is a biotrophic root associate with Norway spruce (Picea abies) in nature. Molecular Ecology 7: 609–616. https://doi.org/10.1046/j.1365-294x.1998.00365.x
  38. Wang, X.H., Huhtinen, S. & Hansen, K. (2016) Multilocus phylogenetic and coalescent-based methods reveal dilemma in generic limits, cryptic species, and a prevalent intercontinental disjunct distribution in Geopyxis (Pyronemataceae s. l., Pezizomycetes). Mycologia 108 (6): 1189–1215. https://doi.org/10.3852/16-100
  39. White, T.J., Bruns, T.D., Lee, S. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J. & White, T.J. (Eds.) PCR protocols: a guide to methods and applications. Acamedic Press. San Diego, USA, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  40. Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. (2000) A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7 (1–2): 203–214. https://doi.org/10.1089/10665270050081478
  41. Zhuang, W.Y. & Liu, H.Y. (2006) A new species of Geopyxis (Pezizales, Pyronemataceae) with ornamented ascospores from China. Nova Hedwigia 83: 177–186. https://doi.org/10.1127/0029-5035/2006/0083-0177