Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-05-14
Page range: 237-273
Abstract views: 112
PDF downloaded: 2

Taxonomy of epilithic diatoms and teratological forms under the presence of metals in surface sediment

Graduate Program in Conservation and Management of Natural Resources (PPRN), Western Paraná State University, Universitária Street, 2019, Jardim Universitário, zip code 85819–110, Cascavel, Paraná, Brazil
Graduate Program in Agricultural Engineering (PGEAGRI), Western Paraná State University, Universitária Street, 2019, Jardim Universitário, zip code 85819–110, Cascavel, Paraná, Brazil
National Network Professional Master in Water Resources Management and Regulation (ProfÁgua), Federal University of Technology – Paraná. Rosalina Maria Ferreira Street, 1233, Vila Carola, zip code 87301-899, Campo Mourão, Paraná, Brazil
Graduate Program in Agricultural Engineering (PGEAGRI), Western Paraná State University, Universitária Street, 2019, Jardim Universitário, zip code 85819–110, Cascavel, Paraná, Brazil
Graduate Program in Agricultural Engineering (PGEAGRI), Western Paraná State University, Universitária Street, 2019, Jardim Universitário, zip code 85819–110, Cascavel, Paraná, Brazil
Graduate Program in Botany, Federal University of Paraná. Life Sciences department. Centro Politécnico, mailbox Postal 19031, Jardim das Américas, zip code 81531-980, Curitiba, Paraná, Brazil
Graduate Program in Conservation and Management of Natural Resources (PPRN), Western Paraná State University, Universitária Street, 2019, Jardim Universitário, zip code 85819–110, Cascavel, Paraná, Brazil
Bacillariophyta lotic environments metals morphology periphyton taxonomy teratology Algae

Abstract

Epilithic diatom species in eight sampling sites of the Cascavel River, Southern Brazil, were taxonomically analyzed. The studied streams are located in a predominantly urban micro-watershed, with distroferric red latosol (rich in Fe and Al), being characterized by distinct metals, predominantly acidic pH, and high conductivity. Overall, 221 diatom species were identified at infrageneric level. Pinnularia was the most representative genus in number of species (28 spp.), followed by Eunotia (25 spp.), Gomphonema (17 spp.), Nitzschia (14 spp.), and Navicula (11 spp.). This is the first record of Fragilaria spectra, Fragilaria tenera var. nanana and Humidophila arcuatoides for the state of Paraná, and the first record of Pinnularia laucensis in Brazil. We found teratological valves in 34 taxa, containing modified outline, changes in the striae pattern, and doubled central area. The genus Eunotia showed the highest number of altered taxa (8 spp.). Mixed teratologies (deformed valve outline + unusual striae pattern) were found only in Ulnaria ulna, Encyonema neomesianum, and Gomphonema graciledictum. The metals and environmental variables in the Cascavel River micro-watershed likely contributed to the diatom teratologies. Our work contributes to the taxonomic knowledge of epilithic diatoms in the region, as well as extending the record of teratological taxa in the literature.

References

  1. Al-Handal, A.Y. & Abdullah, D.S. (2010) Diatoms from the restored Mesopotamian marshes, South Iraq. Algological Studies 133: 65–103. https://doi.org/10.1127/1864-1318/2010/0133-0065
  2. Alles, E., Nörpel-Schempp, M. & Lange-Bertalot, H. (1991) Zur Systematik und Ökologie charakteristischer Eunotia-Arten (Bacillariophyceae) in elektrolytarmen Bachoberläufen. Nova Hedwigia 53 (1–2): 171–213.
  3. Almeida, P.D., Morales, E.A., Wetzel, C.E., Ector, L. & Bicudo, D. de C. (2016) Two new diatoms in the genus Fragilaria Lyngbye (Fragilariophyceae) from tropical reservoirs in Brazil and comparison with type material of F. tenera. Phytotaxa 246: 163–183. https://doi.org/10.11646/phytotaxa.246.3.1
  4. Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L. de M. & Sparovek, G. (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728. https://doi.org/10.1127/0941-2948/2013/0507
  5. APHA (2012) Standard Methods for the Examination of Water and Wastewater. 22nd ed. American Public Health Association, Washington, 541 pp.
  6. Azevedo-Santos, V.M., Brito, M.F.G., Manoel, P.S., Perroca, J.F., Rodrigues-Filho, J.L., Paschoal, L.R.P., Gonçalves, G.R.L., Wolf, M.R., Blettler, M.C.M., Andrade, M.C., Nobile, A.B., Lima, F.P., Ruocco, A.M.C., Silva, C.V., Perbiche-Neves, G., Portinho, J.L., Giarrizzo, T., Arcifa, M.S. & Pelicice, F.M. (2021) Plastic pollution: A focus on freshwater biodiversity. Ambio 50: 1313–1324. https://doi.org/10.1007/s13280-020-01496-5
  7. Barral-Fraga, L., Morin, S., Rovira, M.D.M., Urrea, G., Magellan, K. & Guasch, H. (2016) Short-term arsenic exposure reduces diatom cell size in biofilm communities. Environmental Science and Pollution Research 23: 4257–4270. https://doi.org/10.1007/s11356-015-4894-8
  8. Bedoshvili, Y., Gneusheva, K., Popova, M., Morozov, A. & Likhoshway, Y. (2018) Anomalies in the valve morphogenesis of the centric diatom alga Aulacoseira islandica caused by microtubule inhibitors. Biology Open 7: bio035519. https://doi.org/10.1242/bio.035519
  9. Bedoshvili, Y.D. & Likhoshway, Y.V. (2019) Cellular mechanisms of diatom valve morphogenesis. In: Seckbach, J. & Gordon, R. (Eds.) Diatoms: Fundamentals and Applications. Scrivener Publishing, Salem, pp. 99–114. https://doi.org/10.1002/9781119370741.ch5
  10. Benito, X. & Fritz, S.C. (2020) Diatom Diversity and Biogeography Across Tropical South America. In: Rull, V. & Carnaval, A.C. (Eds.) Neotropical Diversification: Patterns and Processes. Cham: Springer International Publishing, pp. 121–143. https://doi.org/10.1007/978-3-030-31167-4_7
  11. Bertolli, L.M., Tremarin, P.I. & Ludwig, T.A.V. (2010) Diatomáceas perifíticas em Polygonum hydropiperoides Michaux, reservatório do Passaúna, Região Metropolitana de Curitiba, Paraná, Brasil. Acta Botanica Brasilica 24: 1065–1081. https://doi.org/10.1590/S0102-33062010000400022
  12. Bicudo, C.E. de M. & Menezes, M. (2017) Gêneros de algas de águas continentais do Brasil (chave para identificação e descrições). 3rd ed. RiMa, São Carlos, 552 pp.
  13. Bory de Saint-Vincent, J.B.G.M. (1822) Bacillarées. Dictionnaire Classique d’Histoire naturelle 2: 127–129.
  14. Cantonati, M., Angeli, N., Virtanen, L., Wojtal, A.Z., Gabrieli, J., Falasco, E., Lavoie, I., Morin, S., Marchetto, A., Fortin, C. & Smirnova, S. (2014) Achnanthidium minutissimum (Bacillariophyta) valve deformities as indicators of metal enrichment in diverse widely-distributed freshwater habitats. Science of The Total Environment 475: 201–215. https://doi.org/10.1016/j.scitotenv.2013.10.018
  15. Cattaneo, A., Couillard, Y., Wunsam, S. & Courcelles, M. (2004) Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). Journal of Paleolimnology 32: 163–175. https://doi.org/10.1023/B:JOPL.0000029430.78278.a5
  16. Cavalier-Smith, T. (2015) Division Heterokontophyta/Ochrophyta. In: Frey, W. (Ed.) Syllabus of Plant Families. A. Engler’s Syllabus der Pflanzenfamilien Part 2/1: Photoautotrophic eukaryotic Algae. Borntraeger, Stuttgart, pp. 61–139.
  17. Cembranel, A.S., Frigo, E.P., Sampaio, S.C., Mercante, E., Reis, R.R. Dos & Remor, M.B. (2017) Residue Analysis of Organochlorine and Organophosphorus pesticides in urban lake sediments. Engenharia Agrícola 37: 1254–1267. https://doi.org/10.1590/1809-4430-eng.agric.v37n6p1254-1267/2017
  18. Cesarini, G., Secco, S., Taurozzi, D., Venditti, I., Battocchio, C., Marcheggiani, S., Mancini, L., Fratoddi, I., Scalici, M. & Puccinelli, C. (2023) Teratogenic effects of environmental concentration of plastic particles on freshwater organisms. Science of The Total Environment 898: 165564. https://doi.org/10.1016/j.scitotenv.2023.165564
  19. Cleve, P.T. (1894) Les diatomées de l’Equateur. Le Diatomiste 2: 99–103.
  20. Companhia Ambiental do Estado de São Paulo (CETESB) & Agência Nacional das Águas (ANA) (2011) Guia Nacional De Coleta E Preservação De Amostras: água, sedimento, comunidades aquáticas e efluentes líquidos. Companhia Ambiental do Estado de São Paulo e Agência Nacional das Águas, Brasília, 326 pp.
  21. Compère, P. (2001) Ulnaria (Kützing) Compère, a new genus name for Fragilaria subgen. Alterasynedra Lange-Bertalot with comments on the typification of Synedra Ehrenberg. In: Jahn, R., Kociolek, J.P., Witkowski, A. & Compère, P. (Eds.) Lange-Bertalot-Festschrift: Studies on Diatoms. Dedicated to Prof. Dr. Dr. h.c. Horst Lange-Bertalot on the occassion of his 65th Birthday. A.R.G. Gantner Verlag. K.G., pp. 97–101.
  22. Corbi, J.J., Costa, C.G., Gorni, G.R., Colombo, V. & Rios, L. (2018) Environmental diagnosis of metals in streams near sugarcane cultivation areas: current and historical analysis in the central region of the State of São Paulo. Anais da Academia Brasileira de Ciencias 90: 2711–2719. https://doi.org/10.1590/0001-3765201820170808
  23. Costa, L.F., Wetzel, C.E., Lange-Bertalot, H., Ector, L. & Bicudo, D.C. (2017) Taxonomy and ecology of Eunotia species (Bacillariophyta) in southearstern Brazilian reservoirs. J. Cramer, Stuttgart, 302 pp.
  24. Cox, E.J. (2015) Coscinodiscophyceae, Mediophyceae, Fragilariophyceae, Bacillariophyceae (Diatoms). In: Frey, W. (Ed.) Syllabus of plant families. Adolf Engler’s Syllabus der Pflanzenfamilien. 13th Ed. Photoautotrophic eukaryotic algae Glaucocystophyta, Cryptophyta, Dinophyta/Dinozoa, Heterokontophyta/Ochrophyta, Chlorarachniophyta/Cercozoa, Euglenophyta/Euglenozoa, Chlorophyta, Streptophyta pp. Borntraeger Science Publishers, Berlin, pp. 64–103.
  25. Czarnecki, D.B. (1994) The freshwater diatom culture collection at Loras College, Dubuque, Iowa. Memoirs of the California Academy of Sciences 17: 155–174.
  26. Dickman, M.D. (1998) Benthic marine diatom deformities associated with contaminated sediments in Hong Kong. Environment International 24: 749–759. https://doi.org/10.1016/S0160-4120(98)00060-9
  27. Ehrenberg, C.G. (1832) Über die Entwicklung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 1831: 1–154, 4 pls.
  28. Ehrenberg, C.G. (1837) Über ein aus fossilen Infusorien bestehendes, 1832 zu Brod verbacknes Bergmehl von der Grenzen Lapplands in Schweden. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich-Preussischen Akademie der Wissenschaften zu Berlin 1837: 43–45. https://doi.org/10.1002/andp.18371160116
  29. Ehrenberg, C.G. (1843a) Mittheilungen über 2 neue asiatische Lager fossiler Infusorien-Erden aus dem russischen TransKaukasien (Grusien) und Sibirien. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich-Preussischen Akademie der Wissenschaften zu Berlin 1843: 43–49.
  30. Ehrenberg, C.G. (1843b) Verbreitung und Einflufs des mikroskopischen Lebens in Süd-und Nord-Amerika. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 1841: 291–445.
  31. Falasco, E., Bona, F., Badino, G., Hoffmann, L. & Ector, L. (2009a) Diatom teratological forms and environmental alterations: A review. Hydrobiologia 623: 1–35. https://doi.org/10.1007/s10750-008-9687-3
  32. Falasco, E., Bona, F., Ginepro, M., Hlúbiková, D., Hoffmann, L. & Ector, L. (2009b) Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA 35: 595–606. https://doi.org/10.4314/wsa.v35i5.49185
  33. Falasco, E., Ector, L., Wetzel, C.E., Badino, G. & Bona, F. (2021) Looking back, looking forward: a review of the new literature on diatom teratological forms (2010–2020). Hydrobiologia 848: 1675–1753. https://doi.org/10.1007/s10750-021-04540-x
  34. Fan, J.L., Wei, X.Z., Wan, L.C., Zhang, L.Y., Zhao, X.Q., Liu, W.Z., Hao, H.Q. & Zhang, H.Y. (2011) Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking. Journal of plant physiology 168 (11): 1157–1167. https://doi.org/10.1016/j.jplph.2011.01.031
  35. Faria, D.M. de, Tremarin, P.I. & Ludwig, T.A.V. (2010) Diatomáceas perifíticas da represa Itaqui, São José dos Pinhais, Paraná: Fragilariales, Eunotiales, Achnanthales e Gomphonema Ehrenberg. Biota Neotropica 10: 415–427. https://doi.org/10.1590/S1676-06032010000300035
  36. Fernández, M.R., Martín, G., Corzo, J., de la Linde, A., García, E., López, M. & Sousa, M. (2018) Design and Testing of a New Diatom-Based Index for Heavy Metal Pollution. Archives of Environmental Contamination and Toxicology 74: 170–192. https://doi.org/10.1007/s00244-017-0409-6
  37. Fontana, L., Albuquerque, A.L.S., Brenner, M., Bonotto, D.M., Sabaris, T.P.P., Pires, M.A.F., Cotrim, M.E.B. & Bicudo, D.C. (2014) The eutrophication history of a tropical water supply reservoir in Brazil. Journal of Paleolimnology 51: 29–43. http://dx.doi.org/10.1007/s10933-013-9753-3
  38. Frenguelli, J. (1933) Contribución al conocimiento de las Diatomeas Argentinas. Diatomeas de la región de los Esteros del Yberá (en la Provincia de Corrientes). Anales del Museo Nacional de Historia Natural 37: 365–476.
  39. Fundação para o Desenvolvimento Científico e Tecnológico (FUNDETEC) (1995) Bacia Hidrográfica do Rio Cascavel—Proposta para recuperação ambiental. Prefeitura Municipal de Cascavel, Cascavel, 164 pp.
  40. Furey, P.C., Lowe, R.L. & Johansen, J.R. (2009) Teratology in Eunotia taxa in the great smoky mountains national park and description of Eunotia macroglossa sp. nov. Diatom Research 24: 273–290. https://doi.org/10.1080/0269249X.2009.9705802
  41. Garnett, S.T. & Christidis, L. (2018) Science-based taxonomy still needs better governance: Response to Thomson et al. PLOS Biology 16: e2005249. https://doi.org/10.1371/journal.pbio.2005249
  42. Gautam, S., Kumar, L., Vinayak, V. & Arya, A. (2017) Morphological and physiological alterations in the diatom Gomphonema pseudoaugur due to heavy metal stress. Ecological Indicators 72: 67–76. https://doi.org/10.1016/j.ecolind.2016.08.002
  43. Gerbersdorf, S.U. & Wieprecht, S. (2015) Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. Geobiology 13 (1): 68–97. https://doi.org/10.1111/gbi.12115
  44. Gómez, N. & Licursi, M. (2003) Abnormal forms in Pinnularia gibba (Bacillariophyceae) in a polluted lowland stream from Argentina. Nova Hedwigia 77: 389–398. https://doi.org/10.1127/0029-5035/2003/0077-0389
  45. Gómez, N., Sierra, M.V., Cortelezzi, A. & Rodrigues Capítulo, A. (2008) Effects of discharges from the textile industry on the biotic integrity of benthic assemblages. Ecotoxicology and Environmental Safety 69: 472–479. https://doi.org/10.1016/j.ecoenv.2007.03.007
  46. Grabowska, M., Hindák, F. & Hindáková, A. (2014) Phototrophic microflora of dystrophic Lake Sęczek, Masuria, Poland. Oceanological and Hydrobiological Studies 43: 337–345. https://doi.org/10.2478/s13545-014-0149-4
  47. Hassall, A.H. (1845) A History of the British Freshwater Algae. Taylor, Walton and Maberly, London, 462 pp.
  48. Houk, V. & Klee, R. (2004) The stelligeroid taxa of the genus Cyclotella (Kützing) Brébisson (Bacillariophyceae) and their transfer into the new genus Discostella gen. nov. Diatom Research 19: 203–228. https://doi.org/10.1080/0269249X.2004.9705871
  49. Hustedt, F. (1950) Die Diatomeenflora norddeutscher Seen mit besonderer Berücksichtigung des holsteinischen Seengebiets V-VII. Seen in Mecklenburg, Lauenburg und Nordostdeutschland. Archiv für Hydrobiologie 43: 329−458.
  50. De Jonge, M., Van de Vijver, B., Blust, R. & Bervoets, L. (2008) Responses of aquatic organisms to metal pollution in a lowland river in Flanders: A comparison of diatoms and macroinvertebrates. Science of the Total Environment 407: 615–629. https://doi.org/10.1016/j.scitotenv.2008.07.020
  51. Khan, R., Saxena, A., Shukla, S., Sekar, S., Senapathi, V. & Wu, J. (2021) Environmental contamination by heavy metals and
  52. associated human health risk assessment: a case study of surface water in Gomti River Basin, India. Environmental Science and Pollution Research 28: 56105–56116. https://doi.org/10.1007/s11356-021-14592-0
  53. Kim Tiam, S., Lavoie, I., Doose, C., Hamilton, P.B. & Fortin, C. (2018) Morphological, physiological and molecular responses of Nitzschia palea under cadmium stress. Ecotoxicology 27: 675–688. https://doi.org/10.1007/s10646-018-1945-1
  54. Krammer, K. (1992) Pinnularia. Eine Monographie der europäischen Taxa. Bibliotheca Diatomologica 26: 1–353.
  55. Krammer, K. (1997) Die cymbelloidean Diatomeen: eine Monographie der weltweit bekannten taxa. II Encyonema part., Encyonopsis and Cymbellopsis. Bibliotheca Diatomologica 37: 1–469.
  56. Krammer & Lange-Bertalot, H. (1985) Naviculaceae Neue und wenig bekannte Taxa, neue Kombinationen und Synonyme sowie Bemerkungen zu einigen Gattungen. Bibliotheca Diatomologica 9: 1–230.
  57. Kützing, F.T. (1833) Synopsis Diatomacearum oder Versuch einer systematischen Zusammenstellung der Diatomeen. Linnaea: 8[5]: 529–620. https://doi.org/10.5962/bhl.title.65634
  58. Kützing, F.T. (1836) Algarum Aquae Dulcis Germanicarum. Decas XVI. Collegit Fridericus Traugott Kützing, Plur. Societt. Litt. Sodalis. Halis Saxonum in Commissis C.A. Schwetschkii et Fil, 4 pp.
  59. Kützing, F.T. (1844) Die Kieselschaligen. Bacillarien oder Diatomeen. Nordhausen, 152 pp. https://doi.org/10.5962/bhl.title.64360
  60. Lange-Bertalot, H. (1980) Zur systematischen Bewertung der bandförmigen Kolonien bei Navicula und Fragilaria. Kriterien für die Vereinigung von Synedra (subgen. Synedra) Ehrenberg mit Fragilaria Lyngbye. Nova Hedwigia 33: 723–787.
  61. Lange-Bertalot, H. (1993) 85 neue Taxa und über 100 weitere neu definierte Taxa ergänzend zur Süsswasserflora von Mitteleuropa, Vol. 2/1-4. Bibliotheca Diatomologica 27: 1–164.
  62. Lange-Bertalot, H. (1999) Neue Kombinationen von taxa aus Achnanthes Bory (sensu lato). Iconographia Diatomologica 6: 276–289.
  63. Lange-Bertalot, H. (2001) Navicula sensu stricto. 10 genera separated from Navicula sensu lato Frustulia. Diatoms of Europe 2: 1–526.
  64. Lange-Bertalot, H., Bak, M., Witkowski, A. & Tagliaventi, N. (2011) Eunotia and some related genera. Diatoms of Europe 6: 1–747.
  65. Lange-Bertalot, H. & Genkal, S.I. (1999) Diatoms from Siberia I. Islands in the Arctic Ocean (Yugorsky-Shar Strait). Iconographia Diatomologica 6: 1–292.
  66. Lange-Bertalot, H. & Metzeltin, D. (1996) Indicators of oligotrophy. 800 taxa representative of three ecologically distinct lake types. Carbonate buffered-oligodys-trophic-weakly buffered soft water. Iconographia Diatomologica 2: 1–390.
  67. Lange-Bertalot, H. & Ulrich, S. (2014) Contributions to the taxonomy of needle-shaped Fragilaria and Ulnaria species. Lauterbornia 78: 1–73.
  68. Lavoie, I., Hamilton, P.B., Morin, S., Kim Tiam, S., Kahlert, M., Gonçalves, S., Falasco, E., Fortin, C., Gontero, B., Heudre, D., Kojadinovic-Sirinelli, M., Manoylov, K., Pandey, L.K. & Taylor, J.C. (2017) Diatom teratologies as biomarkers of contamination: Are all deformities ecologically meaningful? Ecological Indicators 82: 539–550. https://doi.org/10.1016/j.ecolind.2017.06.048
  69. Lavoie, I., Morin, S., Laderriere, V. & Fortin, C. (2018) Freshwater diatoms as indicators of combined long-term mining and urban stressors in junction creek (Ontario, Canada). Environments 5: 1–17. https://doi.org/10.3390/environments5020030
  70. Lavoie, I., Lavoie, M. & Fortin, C. (2012) A mine of information: Benthic algal communities as biomonitors of metal contamination from abandoned tailings. Science of the Total Environment 425: 231–241. https://doi.org/10.1016/j.scitotenv.2012.02.057
  71. Leguay, S., Lavoie, I., Levy, J.L. & Fortin, C. (2016) Using biofilms for monitoring metal contamination in lotic ecosystems: The protective effects of hardness and pH on metal bioaccumulation. Environmental Toxicology and Chemistry 35: 1489–1501. https://doi.org/10.1002/etc.3292
  72. Lowe, R.L., Kociolek, P., Johansen, J.R., Van De Vijver, B., Lange-Bertalot, H. & Kopalová, K. (2014) Humidophila gen. nov., a new genus for a group of diatoms (Bacillariophyta) formerly within the genus Diadesmis: species from Hawai’i, including one new species. Diatom Research 29: 351–360. https://doi.org/10.1080/0269249X.2014.889039
  73. Luís, A.T., Durães, N., de Almeida, S.F.P. & da Silva, E.F. (2016) Integrating geochemical (surface waters, stream sediments) and biological (diatoms) approaches to assess AMD environmental impact in a pyritic mining area: Aljustrel (Alentejo, Portugal). Journal of Environmental Sciences (China) 42: 215–226. https://doi.org/10.1016/j.jes.2015.07.008
  74. Luís, A.T., Teixeira, P., Almeida, S.F.P., Matos, J.X. & da Silva, E.F. (2011) Environmental impact of mining activities in the Lousal area (Portugal): Chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Science of the Total Environment 409: 4312–4325. https://doi.org/10.1016/j.scitotenv.2011.06.052
  75. Luís, A.T., Teixeira, P., Almeida, S.F.P., Ector, L., Matos, J.X. & Silva, A.F. da (2009) Impact of Acid Mine Drainage (AMD) on Water Quality, Stream Sediments and Periphytic Diatom Communities in the Surrounding Streams of Aljustrel Mining Area (Portugal). Water, Air, and Soil Pollution 200: 147–167. https://doi.org/10.1007/s11270-008-9900-z
  76. Lyngbye, H.C. (1819) Tentamen Hydrophytologiae Danicae Continens omnia Hydrophyta Cryptogama Daniae, Holsatiae, Faeroae, Islandiae, Groenlandiae hucusque cognita, Systematice Disposita, Descripta et iconibus illustrata, Adjectis Simul Speciebus Norvegicis. Hafniae, 248 pp., 70 pls. https://doi.org/10.5962/bhl.title.6079
  77. Marra, R.C., Tremarin, P.I., Algarte, V.M. & Ludwig, T.V. (2016) Epiphytic diatoms (Diatomeae) from Piraquara II urban reservoir, Paraná state. Biota Neotropica 16: 1–20. https://doi.org/10.1590/1676-0611-BN-2016-0200
  78. Martins, W.A., Martins, L.L., De Maria, I.C., de Moraes, J.F.L. & Pedro Júnior, M.J. (2021) Reduction of sediment yield by riparian vegetation recovery at distinct levels of soil erosion in a tropical watershed. Ciência e Agrotecnologia 45: e028220. https://doi.org/10.1590/1413-7054202145028220
  79. McFarland, B.H., Hill, B.H. & Willingham, W.T. (1997) Abnormal Fragilaria spp. (Bacillariophyceae) in streams impacted by mine drainage. Journal of Freshwater Ecology 12: 141–149. https://doi.org/10.1080/02705060.1997.9663517
  80. McGowan, S., Gunn, H.V., Whiteford, E.J., John Anderson, N., Jones, V.J. & Law, A.C. (2018) Functional attributes of epilithic diatoms for palaeoenvironmental interpretations in South-West Greenland lakes. Journal of Paleolimnology 60: 273–298. https://doi.org/10.1007/s10933-017-9968-9
  81. Medeiros, G., Padial, A.A., Wedig Amaral, M.W., Ludwig, T.A.V. & Bueno, N.C. (2020) Environmental variables likely influence the periphytic diatom community in a subtropical lotic environment. Limnologica 80: 125718. https://doi.org/10.1016/j.limno.2019.125718
  82. Medeiros, G., Padial, A.A., Amaral, M.W.W., Guicho, R., Pilatti, M.C., Sampaio, S.C., Ludwig, T.A.V., Bueno, N.C. & dos Reis, R.R. (2022) Exploring Key Determinants of the Periphytic Diatom Community in a Southern Brazilian Micro-Watershed. Water 14 (23): 3913. https://doi.org/10.3390/w14233913
  83. Mereschkowsky, C. (1902) On Sellaphora, a new genus of diatoms. Annals and Magazine of Natural History, Series 7 9: 185–195. https://doi.org/10.1080/00222930208678565
  84. Metzeltin, D. & Lange-Bertalot, H. (1998) Tropical Diatoms of South America I: About 700 predominantly rarely known or new taxa representative of the neotropical flora. Iconographia Diatomologica 5: 1–695.
  85. Metzeltin, D. & Lange-Bertalot, H. (2002) Diatoms from the ˝Island Continent˝ Madagascar. Iconographia Diatomologica 11: 1–286.
  86. Millan, F., Izere, C., Breton, V., Voldoire, O., Biron, D.G., Wetzel, C.E., Miallier, D., Allain, E., Ector, L. & Beauger, A. (2019) The effect of natural radioactivity on diatom communities in mineral springs. Botany Letters 167: 95–113. https://doi.org/10.1080/23818107.2019.1691051
  87. Moir, K.E., Ridal, J.J. & Cumming, B.F. (2022) Spatiotemporal and teratological analyses of diatom assemblages from sediments contaminated with industrial effluents in the St. Lawrence River near Cornwall (Ontario, Canada). Hydrobiologia 849: 1417–1436. https://doi.org/10.1007/s10750-021-04792-7
  88. Mora, D., Carmona, J. & Cantoral-Uriza, E.A. (2015) Diatomeas epilíticas de la cuenca alta del río Laja, Guanajuato, México. Revista Mexicana de Biodiversidad 86: 1024–1040. https://doi.org/10.1016/j.rmb.2015.09.004
  89. Moreira-Filho, H. & Valente-Moreira, I.M. (1981) Avaliação taxonômica e ecológica das diatomáceas (Bacillariophyceae) epífitas em algas pluricelulares obtidas nos litorais dos Estados do Paraná, Santa Catarina e São Paulo. Boletim do Museu Botânica Municipal 47: 1–17.
  90. Moresco, C., Tremarin, P.I., Ludwig, T.A.V. & Rodrigues, L. (2011) Diatomáceas perifíticas abundantes em três córregos com diferentes ações antrópicas em Maringá, PR, Brasil. Revista Brasileira de Botânica 34: 359–373. https://doi.org/10.1590/S0100-84042011000300010
  91. Morin, S., Cordonier, A., Lavoie, I., Arini, A., Blanco, S., Duong, T.T., Tornés, E., Bonet, B., Corcoll, N., Faggiano, L., Laviale, M., Pérès, F., Becares, E., Coste, M., Feurtet-Mazel, A., Fortin, C., Guasch, H. & Sabater, S. (2012) Consistency in Diatom Response to Metal-Contaminated Environments. In: Guasch, H., Ginebreda, A. & Geiszinger, A. (Eds.) Emerging and priority pollutants in rivers. Springer-Verlag, Berlin Heidelberg, pp. 117–146. https://doi.org/10.1007/978-3-642-25722-3_5
  92. Morin, S., Corcoll, N., Bonet, B., Tlili, A. & Guasch, H. (2014) Diatom responses to zinc contamination along a Mediterranean river. Plant Ecology and Evolution 147: 325–332. https://doi.org/10.5091/plecevo.2014.986
  93. Morin, S., Duong, T.T., Dabrin, A., Coynel, A., Herlory, O., Baudrimont, M., Delmas, F., Durrieu, G., Schäfer, J., Winterton, P., Blanc, G. & Coste, M. (2008) Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environmental Pollution 151: 532–542. https://doi.org/10.1016/j.envpol.2007.04.023
  94. Morin, S. & Coste, M. (2006) Metal-induced shifts in the morphology of diatoms from the Riou Mort and Riou Viou streams (South West France). Use of algae for monitoring rivers VI: 91–106.
  95. Morin, S., Vivas-Nogues, M., Thi, T.D., Boudou, A., Coste, M. & Delmas, F. (2007) Dynamics of benthic diatom colonization in a cadmium/zinc-polluted river (Riou-Mort, France). Fundamental and Applied Limnology 168: 179–187. https://doi.org/10.1127/1863-9135/2007/0168-0179
  96. Olenici, A., Baciu, C., Blanco, S. & Morin, S. (2020) Naturally and Environmentally Driven Variations in Diatom Morphology: Implications for Diatom-Based Assessment of Water Quality. In: Cristóbal, G., Blanco, S. & Bueno, G. (Eds.) Modern Trends in Diatom Identification. Springer International Publishing, Cham, pp. 39–50. https://doi.org/10.1007/978-3-030-39212-3_4
  97. Olenici, A., Blanco, S., Borrego-Ramos, M., Jimenez-Gomez, F., Guerrero, F., Momeu, L. & Baciu, C. (2019) A new diatom teratology driven by metal pollution in a temperate river (Roșia Montanǎ, Romania). Annali di Botanica 9: 113–118. https://doi.org/10.13133/2239-3129/14624
  98. Olenici, A., Blanco, S., Borrego-Ramos, M., Momeu, L. & Baciu, C. (2017) Exploring the effects of acid mine drainage on diatom teratology using geometric morphometry. Ecotoxicology 26: 1018–1030. https://doi.org/10.1007/s10646-017-1830-3
  99. Olodo, I.Y., Cocquyt, C., Abou, Y. & Kokou, K. (2020) Seasonal variations and distribution of diatom flora of Lake Ahémé (Benin, West Africa). Botany Letters 167: 160–173. https://doi.org/10.1080/23818107.2019.1657495
  100. Pandey, L.K. & Bergey, E.A. (2016) Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool. Science of the Total Environment 550: 372–381. https://doi.org/10.1016/j.scitotenv.2015.11.151
  101. Pandey, L.K., Bergey, E.A., Lyu, J., Park, J., Choi, S., Lee, H., Depuydt, S., Oh, Y.T., Lee, S.M. & Han, T. (2017) The use of diatoms in ecotoxicology and bioassessment: Insights, advances and challenges. Water Research 118: 39–58. https://doi.org/10.1016/j.watres.2017.01.062
  102. Pandey, L.K., Kumar, D., Yadav, A., Rai, J. & Gaur, J.P. (2014) Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecological Indicators 36: 272–279. https://doi.org/10.1016/j.ecolind.2013.08.002
  103. Pandey, L.K., Lavoie, I., Morin, S., Depuydt, S., Lyu, J., Lee, H., Jung, J., Yeom, D.-H., Han, T. & Park, J. (2019) Towards a multi-bioassay-based index for toxicity assessment of fluvial waters. Environmental Monitoring and Assessment 191: 112. https://doi.org/10.1007/s10661-019-7234-5
  104. Pandey, L.K., Lavoie, I., Morin, S., Park, J., Lyu, J., Choi, S., Lee, H. & Han, T. (2018a) River water quality assessment based on a multi-descriptor approach including chemistry, diatom assemblage structure, and non-taxonomical diatom metrics. Ecological Indicators 84: 140–151. https://doi.org/10.1016/j.ecolind.2017.07.043
  105. Pandey, L.K., Sharma, Y.C., Park, J., Choi, S., Lee, H., Lyu, J. & Han, T. (2018b) Evaluating features of periphytic diatom communities as biomonitoring tools in fresh, brackish and marine waters. Aquatic Toxicology 194: 67–77. https://doi.org/10.1016/j.aquatox.2017.11.003
  106. Park, J., Bergey, E.A., Han, T. & Pandey, L.K. (2020) Diatoms as indicators of environmental health on Korean islands. Aquatic Toxicology 227: 105594. https://doi.org/10.1016/j.aquatox.2020.105594
  107. Peres, K.K., Guicho, R., Medeiros, G., Amaral, M.W.W., da Silva, T.T., Pilatti, M.C., Prior, M. & Bueno, N.C. (2022) Environmental fragility as an indicator of the risk of contamination by human action in watersheds used for public supply in western Paraná, Brazil. Environmental Earth Sciences 81: 486. https://doi.org/10.1007/s12665-022-10619-y
  108. Peres-Weerts, F. (2000) Mise en évidence des Effets Toxiques des Métaux Lourds sur les Diatomées par L’étude des Formes Tératogenes. Agence de L’eau Artois Picardie, Douai, France, 24 pp.
  109. Přibyl, P., Cepák, V. & Zachleder, V. (2005) Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: I. The effect of cadmium. Protoplasma 226: 231–240. https://doi.org/10.1007/s00709-005-0123-5
  110. Přibyl, P., Cepák, V. & Zachleder, V. (2008) Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: II. The effect of aluminium, nickel and copper. Toxicology in Vitro 22 (5): 1160–1168. https://doi.org/10.1016/j.tiv.2008.03.005
  111. Rabenhorst, L. (1853) Die Süsswasser-Diatomaceen (Bacillarien): für Freunde der Mikroskopie. Eduard Kummer, Leipzig, 72 pp. https://doi.org/10.5962/bhl.title.8348
  112. Rabenhorst, L. (1864) Flora Europaea Algarum aquae dulcis et submarinae. Sectio I. Algas diatomaceas complectens, cum figuris generum omnium xylographice impressis. Apud Eduardum Kummerum, Leipzig, 359 pp. https://doi.org/10.5962/bhl.title.7029
  113. Reichardt, E. & Lange-Bertalot, H. (1991) Taxonomische Revision des Artencomplexes um Gomphonema angustum—G. dichotomum—G. intricatum—G. vibrio und ahnliche Taxa (Bacillariophyceae). Nova Hedwigia 53 (3–4): 519–544.
  114. Reichardt, E. (2015) Gomphonema gracile Ehrenberg sensu stricto et sensu auct. (Bacillariophyceae): A taxonomic revision. Nova Hedwigia 101: 367–393. https://doi.org/10.1127/nova_hedwigia/2015/0275
  115. Remor, M.B., Sampaio, S.C., de Rijk, S., Vilas Boas, M.A., Gotardo, J.T., Pinto, E.T. & Schardong, F.A. (2018) Sediment geochemistry of the urban Lake Paulo Gorski. International Journal of Sediment Research 33: 406–414. https://doi.org/10.1016/j.ijsrc.2018.04.009
  116. Richards, J., Tibby, J., Barr, C. & Goonan, P. (2020) Effect of substrate type on diatom-based water quality assessments in the Mount Lofty Ranges, South Australia. Hydrobiologia 847: 3077–3090. https://doi.org/10.1007/s10750-020-04316-9
  117. Round, F.E. & Bukhtiyarova, L. (1996) Four new genera based on Achnanthes (Achnanthidium) together with a re-definition of Achnanthidium. Diatom Research 11: 345–361. https://doi.org/10.1080/0269249X.1996.9705389
  118. Round, F.E., Crawford, R.M. & Mann, D.G. (1990) The Diatoms. Biology and morfology of the genera. Cambridge University Press, Cambridge, 747 pp.
  119. Rumrich, U., Lange-Bertalot, H. & Rumrich, M. (2000) Diatoms of the Andes. From Venezuela to Patagonia/Tierra del Fuego and two additional contributions. Iconographia Diatomologica 9: 1–673.
  120. Santos, E.M. dos, Tremarin, P.I. & Ludwig, T.A.V. (2011) Diatomáceas perifíticas em Potamogeton polygonus Cham. & Schltdl.: citações pioneiras para o estado do Paraná. Biota Neotropica 11: 303–315. https://doi.org/10.1590/S1676-06032011000300025
  121. Santos, H.G. dos, Jacomine, P.K.T., Anjos, L.H.C. dos, Oliveira, V.A. de, Lumbreras, J.F., Coelho, M.R., Almeida, J.A. de, Araujo Filho, J.C. de, Oliveira, J.B. de, & Cunha, T.J.F. (2018) Sistema brasileiro de classificação de solos. 5th ed. Embrapa, Brasília, 355 pp.
  122. Schaarschmidt, G. (1881) Specimen phycologiae aequatoriensis. Magyar Novenytani Lapok 5: 17–24.
  123. Schoefs, B., Van de Vijver, B., Wetzel, C.E. & Ector, L. (2020) From diatom species identification to ecological and biotechnological applications. Botany Letters 167: 2–5. https://doi.org/10.1080/23818107.2020.1719883
  124. Sgro, G.V, Poole, J.B. & Johansen, J.R. (2007) Diatom species composition and ecology of the animas river watershed, Colorado, USA. Western North American Naturalist 67: 510–519. https://doi.org/10.3398/1527-0904(2007)67[510:DSCAEO]2.0.CO;2
  125. Sienkiewicz, E. & Gasiorowski, M. (2016) The evolution of a mining lake—From acidity to natural neutralization. Science of the Total Environment 557–558: 343–354. https://doi.org/10.1016/j.scitotenv.2016.03.088
  126. Sienkiewicz, E., Gąsiorowski, M., Sekudewicz, I., Kowalewska, U. & Matoušková, Š. (2023) Responses of diatom composition and teratological forms to environmental pollution in a post-mining lake (SW Poland). Environmental Science and Pollution Research 30 (51): 110623–110638. https://doi.org/10.1007/s11356-023-30113-7
  127. Silva, A.M. da, Ludwig, T.A.V., Tremarin, P.I. & Vercellino, I.S. (2010) Diatomáceas perifíticas em um sistema eutrófico brasileiro (Reservatório do Iraí, estado do Paraná). Acta Botanica Brasilica 24: 997–1016. https://doi.org/10.1590/S0102-33062010000400015
  128. da Silva, E.F., Almeida, S.F.P., Nunes, M.L., Luís, A.T., Borg, F., Hedlund, M., de Sá, C.M., Patinha, C. & Teixeira, P. (2009) Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. Science of the Total Environment 407: 5620–5636. https://doi.org/10.1016/j.scitotenv.2009.06.047
  129. Silva-Lehmkuhl, A.M. da, Tremarin, P.I., Vercellino, I.S. & Ludwig, T.A.V. (2019) Periphytic diatoms from an oligotrophic lentic system, Piraquara I reservoir, Paraná state, Brazil. Biota Neotropica 19: e20180568. https://doi.org/10.1590/1676-0611-bn-2018-0568
  130. Simić, S., Petrović, A., Đorđević, N., Vasiljević, B., Radojković, N., Mitrović, A. & Janković, M. (2018) Indicative ecological status assessment of the Despotovica river. Kragujevac Journal of Science: 227–242. https://doi.org/10.5937/KgJSci1840227S
  131. Simonsen, R. (1974) The diatom plankton of the Indian Ocean Expedition of RV Meteor 1964–1965. Meteor Forschungsergebnisse Reihe D. Biologie 19: 1–107.
  132. Smith, W. (1853) A synopsis of the British Diatomaceae; with remarks on their structure, functions and distribution; and instructions for collecting and preserving specimens. Vol. 1. John Van Voorst, London, 89 pp. https://doi.org/10.5962/bhl.title.10706
  133. Smith, W. (1856) A synopsis of the British Diatomaceae; with remarks on their structure, functions and distribution; and instructions for collecting and preserving specimens. Vol. 2. John van Voorst, London, 107 pp.
  134. Soleimani, M., Rutten, L., Maddala, S.P., Wu, H., Eren, E.D., Mezari, B., Schreur-Piet, I., Friedrich, H. & van Benthem, R.A.T.M. (2020) Modifying the thickness, pore size, and composition of diatom frustule in Pinnularia sp. with Al3+ ions. Scientific Reports 10: 1–13. https://doi.org/10.1038/s41598-020-76318-5
  135. Studnicka, F. (1888) Beitrag zur Kenntniss der böhmischen Diatomeen. Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wein 38: 735–744.
  136. Su, Y., Lundholm, N. & Ellegaard, M. (2018) Effects of abiotic factors on the nanostructure of diatom frustules—ranges and variability. Applied Microbiology and Biotechnology 102: 5889–5899. https://doi.org/10.1007/s00253-018-9087-1
  137. Sunda, W.G., Price, N.M. & Morel, F.M.M. (2005) Trace metal ion buffers and their use in culture studies. In: Andersen, R.A. (Ed.) Algal Culturing Techniques. Elsevier, Amsterdam, pp. 35–63. https://doi.org/10.1016/B978-012088426-1/50005-6
  138. Szabó, K., Kiss, K.T., Taba, G. & Ács, É. (2005) Epiphytic diatoms of the Tisza River, Kisköre Reservoir and some oxbows of the Tisza River after the cyanide and heavy metal pollution in 2000. Acta Botanica Croatica 64: 1–46.
  139. Tapia, P.M. (2008) Diatoms as bioindicators of pollution in the Mantaro River, Central Andes, Peru. International Journal of Environment and Health 2: 82–91. https://doi.org/10.1504/IJENVH.2008.018674
  140. Townsend, S.A. & Gell, P.A. (2005) The role of substrate type on benthic diatom assemblages in the Daly and Roper Rivers of the Australian wet/dry tropics. Hydrobiologia 548: 101–115. https://doi.org/10.1007/s10750-005-0828-7
  141. U.S. Environmental Protection Agency (USEPA) (1996) Acid digestion of sediments, sludges, and soils. Method 3050B: 12. Available from: https://www.epa.gov/esam/epa-method-3050b-acid-digestion-sediments-sludges-and-soils (accessed: 19 February 2018).
  142. U.S. Environmental Protection Agency (USEPA) (1997) Volunteer Stream Biomonitoring: A Methods Manual. Available from: http://water.epa.gov/type/rsl/monitoring/stream_index.cfm (accessed: 30 January 2018).
  143. Van de Vijver, B., Frenot, Y. & Beyens, L. (2002) Freshwater diatoms from Ile de la Possession (Crozet archipelago, Subantarctica). Bibliotheca Diatomologica 46: 1–412.
  144. Vyverman, W. & Compère, P. (1991) Nupela, a new genus of naviculoid diatoms. Diatom Research 6: 175–179. https://doi.org/10.1080/0269249X.1991.9705156
  145. Wan, L. & Zhang, H. (2012) Cadmium toxicity: effects on cytoskeleton, vesicular trafficking and cell wall construction. Plant Signaling & Behavior 7 (3): 345–348. https://doi.org/10.4161/psb.18992
  146. Werum, M. & Lange-Bertalot, H. (2004) Diatoms in Springs from Central Europe and elsewhere under the influence of hydrogeology and anthropogenic impacts. Iconographia Diatomologica 13: 1–417.
  147. Wetzel, C.E. (2011) Biodiversidade e distribuição de diatomáceas (Ochrophyta, Bacillariophyceae) na bacia hidrográfica do Rio Negro, Amazonas, Brasil. Instituto de Botânica da Secretaria do Meio Ambiente, 1876 pp.
  148. Wetzel, C.E., Ector, L., Van De Vijver, B., Compère, P. & Mann, D.G. (2015) Morphology, typification and critical analysis of some ecologically important small naviculoid species (Bacillariophyta). Fottea 15: 203–234. https://doi.org/10.5507/fot.2015.020
  149. Wiegleb, G., (1980) Some applications of principal components analysis in vegetation: ecological research of aquatic communities. In: Maarel, E. Van Der (Org.) Classification and ordination. Springer, Dordrecht, pp. 67–73. https://doi.org/10.1007/978-94-009-9197-2
  150. Williams, D.M. & Round, F.E. (1988) Revision of the genus Fragilaria. Diatom Research 2: 267–288. https://doi.org/10.1080/0269249X.1987.9705004
  151. Yang, J.-R. & Duthie, H.C. (1993) Morphology and ultrastructure of teratological forms of the diatoms Stephanodiscus niagarae and S. parvus (Bacillariophyceae) from Hamilton Harbour (Lake Ontario, Canada). Hydrobiologia 269/270: 57–66. https://doi.org/10.1007/BF00028004
  152. Yemets, A., Horiunova, I. & Blume, Y. (2021) Cadmium, nickel, copper, and zinc influence on microfilament organization in Arabidopsis root cells. Cell Biology International 45 (1): 211–226. https://doi.org/10.1002/cbin.11485