Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-08-08
Page range: 150-160
Abstract views: 60
PDF downloaded: 5

New species of Salicaceae with opposite leaves from the Atlantic Forest, Brazil

Universidade Estadual de Feira de Santana - UEFS, Programa de Pós-Graduação em Botânica - PPGBot, Feira de Santana, BA, Brasil
Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Vicente, Departamento de Ciências Biológicas e Ambientais, São Vicente, SP
Royal Botanic Gardens, Kew, Richmond, TW9 3AE, London, England, UK
Universidade Estadual de Feira de Santana - UEFS, Programa de Pós-Graduação em Botânica - PPGBot, Feira de Santana, BA, Brasil
Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES
Universidade Estadual de Feira de Santana - UEFS, Programa de Pós-Graduação em Botânica - PPGBot, Feira de Santana, BA, Brasil
Abatia Biodiversity Conservation Endemism Flacourtiaceae Mountain Forest Neotropics Eudicots

Abstract

Abatia mantiqueirensis is described and illustrated as a new species with distribution for the Brazilian states of Minas Gerais and Rio de Janeiro. It is morphologically similar to A. americana but can be distinguished by the presence of canaliculated petiole, acute serrate leaf margin, glands at the apex of the margin serrations that are rounded to concave and projected outwards from the leaf blade, upper portion of the pedicel winged and seeds with tiny dorsal wings. Taxonomic description, comments, and geographical distribution information are here in provided. So far, only three populations of A. mantiqueirensis are known with only one of them recorded in a protected area. Based on the availability of suitable habitats, possible threats and future potential geographical distribution, we propose the conservation status for A. mantiqueirensis as Critically Endangered.

References

  1. Alford, M.H. (2005) Nomenclatural studies in Flacourtiaceae. Ph.D. dissertation. Cornell University Ithaca, New York, 290 pp.
  2. Alford, M.H. (2006) Nomenclatural innovations in Neotropical Salicaceae. Novon 16: 293–298. https://doi.org/10.3417/1055-3177(2006)16[293:NIINS]2.0.CO;2
  3. Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
  4. Alvares, C.A., Stape., J.L., Sentelhas., P.C. & Goncalves, J.L.M. (2013) Modeling monthly mean air temperature for Brazil. Theoretical and Applied Climatology 113 (3–4): 407–427. https://doi.org/10.1007/s00704-012-0796-6
  5. Azevedo, L., Zappi, D.C., Oliveira, D.M.G., Meyer, L., Lughadha, E.N., Clegg, R., Meireles, L.D., Melo, P.H.A., Pennington, R.T. & Neves, D.M. (2024) On the rocks: Biogeography and floristic identity of rocky ecosystems in eastern South America. Journal of Systematics and Evolution 62 (2): 305–320. https://doi.org/10.1111/jse.13052
  6. Bachman, S., Moat, J., Hill, A.W., de la Torre, J. & Scott, B. (2011) Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. e-Infrastructures for Data Publishing in Biodiversity Science. ZooKeys 150: 117–126. https://doi.org/10.3897/zookeys.150.2109
  7. Benites, V.M., Schaefer, C.E.G.R., Simas, F.N.B. & Santos, H.G. (2007) Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaco. Revista Brasileira de Botânica 30 (4): 569–577. https://doi.org/10.1590/S0100-84042007000400003
  8. Chase, M.W., Zmarzty, S., Lledó, M.D., Wurdack, K.J., Swensen, S.M. & Fay, M.F. (2002) When in doubt, put it in Flacourtiaceae: a molecular phylogenetic analysis based on plastid rbcL DNA sequences. Kew Bulletin 57: 141–181. [https://www.jstor.org/stable/4110825]
  9. Costa, C. & Herrmann, G. (2006) O corredor ecológico da Mantiqueira. In: Costa, C.M.R., Hermann, G., Pinto, I.A. & Costa, P.A.M. (Eds.) Plano de ação do corredor ecológico da Mantiqueira. Valor Natural, Belo Horizonte, pp. 13–29.
  10. Cruz, C.A.G. & Feio, R.N. (2007) Endemismos em anfibios em áreas de altitude na Mata Atlântica no sudeste do Brasil. In: Nascimento, L.B. & Oliveira, M.E. (Eds.) Herpetologia No Brasil II. Sociedade Brasileira de Herpetologia, Belo Horizonte, pp. 117–126.
  11. Eichler, A.W. (1871) Bixaceae. Flora Brasiliensis 13: 510.
  12. Elith, J., Kearney, M. & Phillips, S. (2010) The art of modelling range-shifting species. Methods in Ecology and Evolution 1: 330–342. https://doi.org/10.1111/j.2041-210x.2010.00036.x
  13. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity 17: 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  14. Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315. https://doi.org/10.1002/joc.5086
  15. Gatto, L.C., Ramos, V.L.S., Nunes, B.T.A., Mamede, L., Goes, M.H.B., Mauro, C.A. & Neves, L.B. (1983) Geomorfologia. In: Radambrasil, M. (Ed.) RADAMBRASIL, Levantamento de Recursos Naturais. Folhas SF.23/24 Rio de Janeiro/Vitória; geologia, geomorfologia, pedologia, vegetação e uso potencial da terra Rio de Janeiro.
  16. Gilg, E.F. (1917) Flacourtiaceae. Botanische Jahrbücher für Systematik, Pflanzengeschicte und Pflanzengeographie 54: 343.
  17. Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barancok, P., Alonso, J.L.B., Coldea, G., Dick, J., Erschbamer, B., Calzado, M.R.F., Kazakis, G., Krajci, J., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, D., Moiseev, P., Molau, U., Merzouki, A., Nagy, L., Nakjutsrishvili, G., Pedersen, B., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Theurillat, J.P., Tomaselli, M., Villar, L., Vittoz, P., Vogiatzakis, I. & Grabherr, G. (2012) Continent-wide response of mountain vegetation to climate change. Nature Climate Change 2: 111–115. https://doi.org/10.1038/nclimate1329
  18. Grabherr, G., Gottfried, M. & Pauli, H. (1994) Climate effects on mountain plants. Nature 369: 448. https://doi.org/10.1038/369448a0
  19. Harris, J.G. & Harris, M.W. (2000) Plant identification terminology: an illustrated glossary. Ed 2. Spring Lake Publishing, Spring Lake. 206 pp.
  20. Intergovernmental Panel on Climate Change (2022) Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp. https://doi.org/10.1017/9781009325844.
  21. IUCN (2012) Red list categories and criteria: Version 3.1. 2nd ed. Gland (SW) and Cambridge (UK).
  22. IUCN (2022) Guidelines for using the IUCN red list categories and criteria: Version 15.1. Gland (SW) and Cambridge (UK).
  23. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. & Donoghue, M.J. (2009) Sistemática vegetal: um enfoque filogenético. 3a ed. Artmed, Porto Alegre, 632 pp.
  24. Leão, T.C.C., Fonseca, C.R., Peres, C.A. & Tabarelli, M. (2014) Predicting extinction risk of Brazilian Atlantic forest angiosperms: neotropical plant extinction risk. Conservation Biology 28: 1349–1359. https://doi.org/10.1111/cobi.12286
  25. Lin, C.-T. & Chiu, C.-A. (2020) Comparison of predictor selection procedures in species distribution modelling: A case study of Fagus hayatae. Cerne 26 (2): 172–182. https://doi.org/10.1590/01047760202026022657
  26. Manel, S., Williams, H.C. & Ormerod, S.J. (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38: 921–931. https://doi.org/10.1046/j.1365-2664.2001.00647.x
  27. Pearson, R.G. (2006) Climate change and the migration capacityof species. Trends in Ecology & Evolution 21: 111–113. https://doi.org/10.1016/j.tree.2005.11.022
  28. Pepin, N., Bradley, R.S., Diaz, H.F., Baraer, M., Caceres, E.B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M.Z., Liu, X.D., Miller, J.R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M.B., Williamson, S.N. & Yang, D.Q. (2015) Elevation‐dependent warming in mountain regions of the world. Nature Climate Change 5: 424–430. https://doi.org/10.1038/nclimate2563
  29. Peixoto, M.A., Guedes, T.B., Silva, E.T., Feio, R.N. & Romano, P.S.R. (2020) Biogeographic tools help to assess the effectiveness of protected areas for the conservation of anurans in the Mantiqueira mountain range, Southeastern Brazil. Journal for Nature Conservation 54: 125799. https://doi.org/10.1016/j.jnc.2020.125799
  30. Phillips, S.J. & Dudik, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  31. Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  32. Pickering, C., Hill, W. & Green, K. (2008) Vascular plant diversity and climate change in the alpine zone of the Snowy Mountains, Australia. Biodiversity and Conservation 17: 1627–1644. https://doi.org/10.1007/s10531-008-9371-y
  33. Ruiz-López, H. & Pavón, J.A. (1794) Florae Peruvianae, et Chilensis Prodromus 78. en la imprenta de Sancha, Madrid, pl. 14.
  34. Sanchez, M., Pedroni, F., Eisenlohr, P.V. & Oliveira-Filho, A.T. (2013) Changes in tree community composition and structure of Atlantic rain forest on a slope of the Serra do Mar range, southeastern Brazil, from near sea level to 1000m of altitude. Flora—Morphology, Distribution, Functional Ecology of Plants 208 (2): 184–196. https://doi.org/10.1016/j.flora.2013.03.002
  35. Silva, E.T., Peixoto, M.A., Leite, F.S.F., Feio, R.N. & Garcia, P.C.A. (2018) Anuran distribution in a highly diverse region of the Atlantic Forest: The Mantiqueira Mountain Range in Southeastern Brazil. Herpetologica 74 (4): 294–305. https://doi.org/10.1655/Herpetologica-D-17-00025.1
  36. Silveira, F.A.O., Dayrell, R.L.C., Fiorini, C.F., Negreiros, D. & Borba, E.L. (2020) Diversification in Ancient and Nutrient-Poor Neotropical Ecosystems: How Geological and Climatic Buffering Shaped Plant Diversity in Some of the World’s Neglected Hotspots. In: Rull, V. & Carnaval, A. (Eds.) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham, 830 pp. https://doi.org/10.1007/978-3-030-31167-4_14
  37. Sleumer, H.O. (1980) Flora Neotropica: Flacourtiaceae, 22. New York Botanical Garden Press on behalf of Organization for Flora Neotropica, pp. 1–499.
  38. Stevens, P.F. (2001) Angiosperm Phylogeny Website. Version 14, July 2017 (and more or less continuously updated since). Available from: http://www.mobot.org/MOBOT/research/APweb/ (accessed 22 March 2024)
  39. Taubert, P.H.W. (1892) Botanische Jahrbücher für Systematik, Pflanzengeschicte und Pflanzengeographie 15: 11.
  40. Thiers, B. (continuously updated) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available from: http://sweetgum.nybg.org/science/ih/ (accessed 22 March 2024)
  41. Wehn, S., Lundemo, S. & Holten, J.I. (2014) Alpine vegetation along multiple environmental gradients and possible consequences of climate change. Alpine Botany 124: 155–164. https://doi.org/10.1007/s00035-014-0136-9