Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-26
Page range: 17-30
Abstract views: 218
PDF downloaded: 10

Morphological characteristics and phylogenetic analyses revealed a new invertebrate-pathogenic fungus Akanthomyces bannaensis (Cordycipitaceae, Ascomycota), in China

College of Forestry, Southwest Forestry University, Kunming 650224, P.R. China
College of Forestry, Southwest Forestry University, Kunming 650224, P.R. China
College of Forestry, Southwest Forestry University, Kunming 650224, P.R. China
Pediatric department, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, P.R. China
College of Forestry, Southwest Forestry University, Kunming 650224, P.R. China
1 new species Entomopathogenic fungi Fungal taxonomy Phylogenetic analysis Yunnan Province Fungi

Abstract

The ubiquitous yet diverse associations between insects and fungi have long evolved. At the same time, the interactions between beetles, microbes, and hosts have not been well documented, especially for new fungi taxa. Two interesting specimens of Akanthomyces were found on adult moths of Dudusa sphingiformis in Yunnan Province, Southwest China. These specimens were identified as a new species based on morphology and phylogeny. Akanthomyces bannaensis sp. nov. is characterized by being determined to occur on an adult of Dudusa sphingiformis and synnemata arising from a moth body up to 5 cm long and 0.1–1.3 mm wide, unbranched, cylindrical to clavate with acute or blunt end. The morphological identification and phylogenetic analysis of combined ITS, nLSU, and RPB2 sequence data support A. bannaensis as a new species, in which A. bannaensis is sister to A. pyralidarum. A full description, illustrations and phylogenetic analysis results of the new species are provided.

References

  1. Afandhi, A., Widjayanti, T., Emi, A.A.L., Tarno, H., Afiyanti, M. & Handoko, R.N.S. (2019) Endophytic fungi Beauveria bassiana balsam accelerates growth of common bean (Phaeseolus vulgaris L.). Chemical and Biological Technologies in Agriculture 11 (6): 2–6. https://doi.org/10.1186/s40538-019-0148-1
  2. Aini, A.N., Mongkolsamrit, S., Wijanarka, W., Thanakitpipattana, D., Luangsaard, J.J. & Budiharjo, A. (2020) Diversity of Akanthomyces on moths (Lepidoptera) in Thailand. MycoKeys 71: 1–22. https://doi.org/10.3897/mycokeys.71.55126
  3. Boudier, E. (1885) Note sur un nouveau genre et quelques nouvelles especes des Pyrenomycetes. Revue Mycologique Toulouse 7: 224–227.
  4. Bruen, T.C., Philippe, H. & Bryant, D. (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172: 2665–2681. https://doi.org/10.1534/genetics.105.048975
  5. Chen, W.H., Han, Y.F., Liang, Z.Q. & Jin, D.C. (2017) Lecanicillium araneogenum sp. nov., a new araneogenous fungus. Phytotaxa 305 (1): 29–34. https://doi.org/10.11646/phytotaxa.305.1.4
  6. Chen, W.H., Liu, C., Han, Y.F., Liang, J.D. & Liang, Z.Q. (2018) Akanthomyces araneogenum, a new Isaria-like araneogenous species. Phytotaxa 379 (1): 66–72. https://doi.org/10.11646/phytotaxa.379.1.6
  7. Chen, W.H., Liu, C., Han, Y.F., Liang, J.D., Tian, W.Y. & Liang, Z.Q. (2019) Akanthomyces araneicola, new araneogenous species from Southwest China. Phytotaxa 409 (4): 227–232. https://doi.org/10.11646/phytotaxa.409.4.5
  8. Chen, W.H., Han, Y.F., Liang, J.D. & Liang, Z.Q. (2020a) Akanthomyces neocoleopterorum, a new verticillium-like species. Phytotaxa 432 (2): 119–124. https://doi.org/10.11646/phytotaxa.432.2.2
  9. Chen, W.H., Han, Y.F., Liang, J.D. & Liang, Z.Q. (2020b) Akanthomyces lepidopterorum, a new lecanicillium-like species. Phytotaxa 459 (2): 117–123. https://doi.org/10.11646/phytotaxa.459.2.3
  10. Chen, W.H., Liang JD, Ren, X.X., Zhao, J.H., Han, Y.F. & Liang, Z.Q. (2022) Species diversity of Cordyceps-like fungi in the Tiankeng karst region of China. Microbiology Spectrum 10 (5): e01975–e22. https://doi.org/10.1128/spectrum.01975-22
  11. Chen, W.H., Liang, J.D., Ren, X.X., Zhao, J.H. & Han, Y.F. (2023) Study on species diversity of Akanthomyces (Cordycipitaceae, Hypocreales) in the Jinyun Mountains, Chongqing, China. MycoKeys 98: 299–315. https://doi.org/10.3897/mycokeys.98.106415
  12. Deep White Printing Team (2022) COMPLETE PROCESS COLOR CHART & Four-color superimposition gold and silver. High Color International Publishing House, Hong Kong. pp. 1–135.
  13. Dong, J.H., Li, Q., Yuan, Q., Luo, Y.X., Zhang, X.C., Dai, Y.F., Zhou, Q., Liu, X.F., Deng, Y.L., Zhou, H.M., Muhammad, A. & Zhao, C.L. (2024) Species diversity, taxonomy, molecular systematics and divergence time of wood-inhabiting fungi in Yunnan-Guizhou Plateau, Asia. Mycosphere 15 (1): 1110–1293. https://doi.org/10.5943/mycosphere/15/1/10
  14. Gams, W. & Zare, R. (2001) A revision of Verticillium sect. Prostrata. III. Generic classification. Nova Hedwigia 72 (3–4): 329–337. https://doi.org/10.1127/nova.hedwigia/72/2001/329
  15. Hsieh, L.S., Tzean, S.S. & Wu, W.J. (1997) The genus Akanthomyces on spiders from Taiwan. Mycologia 89 (2): 319–324. https://doi.org/10.1080/00275514.1997.12026788
  16. Hu, Y., Karunarathna, S.C., Li, H., Galappaththi, M.C., Zhao, C.L., Kakumyan, P. & Mortimer, P.E. (2022) The impact of drying temperature on basidiospore size. Diversity 14 (4): 239. https://doi.org/10.3390/d14040239
  17. Huson, D.H. & Bryant, D. (2006) Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254–267. https://doi.org/10.1093/molbev/msj030
  18. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285
  19. Kepler, R.M., Sung, G.H., Ban, S., Nakagiri, A., Chen, M.J., Huang, B., Li, Z. & Spatafora, J.W. (2012) New teleomorph combinations in the entomopathogenic genus Metacordyceps. Mycologia 104 (1): 182–197. https://doi.org/10.3852/11-070
  20. Kepler, R.M., Luangsa-ard, J.J., Hywel-Jones, N.L., Quandt, C.A., Sung, G.H., Rehner, S.A., Aime, M.C., Henkel, T.W., Sanjuan, T., Zare, R., Chen, M.J., Li, Z.Z., Rossman, A.Y., Spatafora, J.W. & Shrestha, B. (2017) A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8 (2): 335–353. https://doi.org/10.5598/imafungus.2017.08.02.08
  21. Kinoshita, H., Wongsuntornpoj, S., Ihara, F. & Nihira, T. (2017) Anti‐Rhodotorula activity of mycophenolic acid enhanced in the presence of polyene antibiotic nystatin. Letters in Applied Microbiology 64 (2): 144–149. https://doi.org/10.1111/lam.12692
  22. Kuephadungphan, W., Phongpaichit, S., Luangsa-ard, J.J. & Rukachaisirikul, V. (2014) Antimicrobial activity of invertebrate-pathogenic fungi in the genera Akanthomyces and Gibellula. Mycoscience 55 (2): 127–133. https://doi.org/10.1016/j.myc.2013.06.007
  23. Larsson, A. (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30 (22): 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
  24. Maddison, W.P. & Maddison, D.R. (2021) Mesquite: a modular system for evolutionary analysis, version 3.70. [http://www.mesquiteproject.org]
  25. Madla, S., Methacanon, P., Prasitsil, M. & Kirtikara, K., (2005) Characterization of biocompatible fungi-derived polymers that induce IL-8 production. Carbohydrate Polymers 59 (3): 275–280. https://doi.org/10.1016/j.carbpol.2004.07.002
  26. Mains, E.B. (1950) Entomogenous species of Akanthomyces, Hymenostilbe and Insecticola in North America. Mycologia 42 (4): 566–589. https://doi.org/10.1080/00275514.1950.12017861
  27. Manfrino, R., Gutierrez, A., Diez del Valle, F., Schuster, C., Ben Gharsa, H., López Lastra, C. & Leclerque, A. (2022) First description of Akanthomyces uredinophilus comb. nov. from Hemipteran insects in America. Diversity 14 (12): e1118. https://doi.org/10.3390/d14121118
  28. Mantzoukas, S. & Lagogiannis, I. (2019) Endophytic colonization of pepper (Capsicum annum) controls aphids (Myzus persicae Sulzer). Applied Science 9 (11): 2–12. https://doi.org/10.3390/app9112239
  29. Matheny, P.B. (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Molecular Phylogenetics and Evolution 35 (1): 1–20. https://doi.org/10.1016/j.ympev.2004.11.014
  30. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2012) The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited Resources. Extreme Science and Engineering Discovery Environment 39: 1–8. https://doi.org/10.1145/2335755.2335836
  31. Mongkolsamrit, S., Noisripoom, W., Thanakitpipattana, D., Wutikhun, T., Spatafora, J.W. & Luangsa-Ard, J. (2018) Disentangling cryptic species with Isaria-like morphs in Cordycipitaceae. Mycologia 110 (1): 230–257.
  32. Park, M.J., Hong, S.B. & Shin, H.D. (2016) Lecanicillium uredinophilum sp. nov. associated with rust fungi from Korea. Mycotaxon 130 (4): 997–1005. https://doi.org/10.5248/130.997
  33. Petersen, J.H. (1996) Farvekort. The Danish Mycological Society’s colour-chart. Foreningen til Svampekundskabens Fremme, Greve. pp. 1–6.
  34. Quaedvlieg, W., Binder, M., Groenewald, J.Z., Summerell, B.A., Carnegie, A.J., Burgess, T.I. & Crous, P.W. (2014) Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia 33: 1–40. https://doi.org/10.3767/003158514X681981
  35. Rathnayaka, A.R., Tennakoon, D.S., Jones, G.E., Wanasinghe, D.N., Bhat, D.J., Priyashantha, A.H., Stephenson, S.L., Tibpromma, S. & Karunarathna, S.C. (2024) Significance of precise documentation of hosts and geospatial data of fungal collections, with an emphasis on plant-associated fungi. New Zealand Journal of Botany. https://doi.org/10.1080/0028825X.2024.2381734
  36. Rehner, B. & Buckley, E. (2005) A Beauveria phylogeny inferred from ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97 (1): 84–98. https://doi.org/10.3852/mycologia.97.1.84
  37. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61 (3): 539–542. https://doi.org/10.1093/sysbio/sys029
  38. Samson, R.A. & Evans, H.C. (1974) Notes on entomogenous fungi from Ghana II. The genus Akanthomyces Acta Botanica Neerlandica 23 (1): 28–35. https://doi.org/10.1111/j.1438-8677.1974.tb00913.x
  39. Sanjuan, T. Tabima, J., Restrepo, S., Læssøe, T., Spatafora, J.W. & Franco-Molano, A.E. (2014) Entomopathogens of Amazonian stick insects and locusts are members of the Beauveria species complex (Cordyceps sensu stricto). Mycologia 106 (2): 260–275. https://doi.org/10.3852/13-020
  40. Shrestha, B., Kubátová, A., Tanaka, E., Oh, J., Yoon, D.H., Sung, J.M. & Sung, G.H. (2019) Spider-pathogenic fungi within Hypocreales (Ascomycota): their current nomenclature, diversity, and distribution. Mycological Progress 18 (8): 983–1003. https://doi.org/10.1007/s11557-019-01512-3
  41. Vega, F.E., Meyling, N.V., Luangsa-ard, J.J. & Blackwell, M. (2012) Fungal entomopathogens. In: Vega, F.E. & Kaya, H.K. (Eds.) Insect Pathology. pp. 171–220. https://doi.org/10.1016/B978-0-12-384984-7.00006-3
  42. Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172 (8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246
  43. Wang, Y.B., Wang, Y., Fan, Q., Duan, D.E., Zhang, G.D., Dai, R.Q., Dai, Y.D., Zeng, W.B., Chen, Z.H., Li, D.D., Tang, D.X., Xu, Z.H., Sun, T., Nguyen, T.T., Tran, N.L., Dao, V.M., Zhang, C.M., Huang, L.D., Liu, Y.J., Zhang, X.M., Yang, D.R., Sanjuan, T., Liu, X.Z., Yang, Z.L. & Yu, H. (2020) Multigene phylogeny of the family Cordycipitaceae (Hypocreales): New taxa and the new systematic position of the Chinese cordycipitoid fungus Paecilomyces hepiali. Fungal Diversity 103 (1): 1–46. https://doi.org/10.1007/s13225-020-00457-3
  44. Wang, Y., Wang., Z.Q., Luo, R., Souvanhnachit, S., Thanarut, C., Dao, V.M. & Yu, H. (2024) Species diversity and major host/substrate associations of the genus Akanthomyces (Hypocreales, Cordycipitaceae). MycoKeys 101: 113–141. https://doi.org/10.3897/mycokeys.101.109751
  45. Wang, Y.H., Wang, W.J., Wang, K., Dong, C.H., Hao, J.R., Kirk, P.M. & Yao, Y.J. (2023) Akanthomyces zaquensis (Cordycipitaceae, Hypocreales), a new species isolated from both the stroma and the sclerotium of Ophiocordyceps sinensis in Qinghai, China. Phytotaxa 579 (3): 198–208. https://doi.org/10.11646/phytotaxa.579.3.5
  46. White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (eds.) PCR protocols: A guide to methods and applications. Academic Press, San Diego, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1.
  47. Zhang, X.C., Li, Y.C., Wang, Y.Y., Xu, Z., Zhao, C.L. & Zhou, H.M. (2024) Xylodon asiaticus (Hymenochaetales, Basidiomycota), a new species of corticioid fungus from southern China. Phytotaxa 634 (1): 1–15. https://doi.org/10.11646/phytotaxa.634.1.1
  48. Zhao, C.L., Qu, M.H., Huang, R.X. & Karunarathna, S.C. (2023) Multi‐gene phylogeny and taxonomy of the wood‐rotting fungal genus Phlebia sensu lato (Polyporales, Basidiomycota). Journal of Fungi 9: 320. https://doi.org/10.3390/jof9030320