Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-11-07
Page range: 12-58
Abstract views: 105
PDF downloaded: 11

Flower arrangement and plant architecture in Atraphaxis, Bactria, and Persepolium (Polygonaceae, Polygonoideae, Polygoneae) and their systematic implications

Department of Higher Plants, Faculty of Biology, M.V. Lomonosov Moscow State University, 1–12, Leninskie Gory, Moscow, 119234, Russia
Institute of Biology and Chemistry, Moscow Pedagogical State University, 6/2 Kibalchicha Str., Moscow, 129164, Russia
evolution floral zone flower arrangement inflorescence shoot architecture shoot system synflorescence plastid phylogeny reproductive shoot vegetative shoot life form Eudicots

Abstract

Plant architecture includes patterns of arrangement of vegetative organs and flowers that may be difficult to describe because of the modular nature of plant growth. We disentangle the terminological issues and provide a case study of a clade of Polygonaceae family. The study focuses on the characteristics of thyrses, reproductive shoots, and shoot systems in 37 species of Atraphaxis, 5 species of Persepolium, and Bactria ovczinnikovii from arid regions of Eurasia using a phylogenetic approach. Based on the plastid phylogeny, parsimonious reconstructions of the evolution of 16 traits were obtained. Three types of perennial shoot systems were identified: perennial systems formed by reproductive (Type I) or vegetative (Type II) shoots, or by both (Type III). Type I was found in Persepolium, Bactria, and a basal subclade of the clade Atraphaxis, and was considered the plesiomorphic state. Type II was found in several distal subclades of the Atraphaxis clade, and was derived from Type I, while Type III was found in a distal subclade, corresponding to the section Atraphaxis. The characteristics of inflorescences and shoots differentiate Persepolium from Bactria and Atraphaxis and provide new data for the classification of the latter genus. Our findings confirm the heterogeneity of the section Tragopyrum, which includes species with Types I and II shoot systems, as well as the isolation of sections Atraphaxis and Physopyrum, which differ in the structure of their thyrses.

References

  1. Aleshina, L.A., Lovelius, O.L. & Sjabrjaj, S.V. (1978) Explorationes morphologiae pollinis specierum generis Atraphaxis L. florae URSS. Novitates systematicae plantarum vascularium et non vascularium 1977: 108–122.
  2. Arnfield, A.J. (2016) Köppen climate classification. Encyclopaedia Britannica. Available from: https://www.britannica.com/science/Köppen-climate-classification (accessed 1 April 2024)
  3. Ashirova, O. (2006) Badkhyz State Reserve. In: Jashenko, R.V. (Ed.) Strict Nature Reserves of Central Asia. Nature protected areas of Central Asia 1. Tethys, Almaty, Kazakhstan, pp. 224–227.
  4. Bao, B. & Grabovskaya-Borodina, A.E. (2003) Atraphaxis L. In: Wu, Z.Y., Raven, P.H. & Hong, D.Y. (Eds.) Flora of China, vol. 5. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, pp. 328–332.
  5. Barthélémy, D. & Caraglio, Y. (2007) Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany 99: 375–407. https://doi.org/10.1093/aob/mcl260
  6. Barton, M.K. (2010) Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Developmental biology 341 (1): 95–113. https://doi.org/10.1016/j.ydbio.2009.11.029
  7. Bauer, R. (1922) Entwicklungsgeschichtliche Untersuchungen an Polygonaceenblüten. Flora 115: 273–292. https://doi.org/10.1016/S0367-1615(17)31769-X
  8. Benlloch, R., Berbel, A., Serrano-Mislata, A. & Madueño, F. (2007) Floral initiation and inflorescence architecture: a comparative view. Annals of botany 100 (3): 659–676. https://doi.org/10.1093/aob/mcm146
  9. Bentham, G. & Hooker, J.D. (1880) Genera Plantarum, vol. 3 (1). L. Reeve & Co, Londini, 459 pp. https://doi.org/10.5962/bhl.title.747
  10. Boissier, E. (1846) Diagnoses Plantarum Orientalium Novarum, Séries i, part 7. B. Hermann, Lipsiae, 130 pp.
  11. Boissier, E. (1879) Flora Orientalis sive Enumeratio plantarum in Oriente a Graecia et Aegypto ad indiae fines hucusque observatarum, vol. 4 (2). H. Georg Bibliopolam, Genevae et Basileae, 1276 pp. https://doi.org/10.5962/bhl.title.20323
  12. Borodina, A.E. (1989) Polygonaceae. In: Borodina, A.E., Grubov, V.I., Grudzinskaja, I.A. & Menitsky, J.L. (Eds.) Plantae Asiae Centralis, secus materies Instituti botanici nomine V.L. Komarovii 9 (Salicaceae — Polygonaceae). Nauka, Leningrad, pp. 77–129.
  13. Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M. & Smyth, D.R. (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119 (3): 721–743. https://doi.org/10.1242/dev.119.3.721
  14. Bowman, J.L. & Eshed, Y. (2000) Formation and maintenance of the shoot apical meristem. Trends in plant science 5 (3): 110–115. https://doi.org/10.1016/S1360-1385(00)01569-7
  15. Brandbyge, J. (1993) Polygonaceae. In: Kubitzki, K., Rohwer, J.G. & Bittrich, V. (Eds.) The families and genera of vascular plants, II. Flowering Plants (Dicotyledons): Magnoliid, Hamamelid and Caryophyllid Families, vol. 2. Springer, Berlin, pp. 531–544. http://dx.doi.org/10.1007/978-3-662-02899-5_63
  16. Bull-Hereñu, K. & Claßen-Bockhoff, R. (2011) Open and closed inflorescences: more than simple opposites. Journal of Experimental Botany 62 (1): 79–88. https://doi.org/10.1093/jxb/erq262
  17. Büsgen, M. & Münch, E. (1929) The structure and life of forest trees, 3rd ed. Chapman & Hall Ltd., London, 508 pp.
  18. Chang, W., Guo, Y., Zhang, H., Liu, X. & Guo, L. (2020) Same actor in different stages: genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Frontiers in Ecology and Evolution 8: 89. https://doi.org/10.3389/fevo.2020.00089
  19. Claßen-Bockhoff, R. & Bull-Hereñu, K. (2013) Towards an ontogenetic understanding of inflorescence diversity. Annals of Botany 112 (8): 1523–1542. https://doi.org/10.1093/aob/mct009
  20. Corbesier, L. & Coupland, G. (2005) Photoperiodic flowering of Arabidopsis: integrating genetic and physiological approaches to characterization of the floral stimulus. Plant, Cell & Environment 28 (1): 54–66. https://doi.org/10.1111/j.1365-3040.2005.01283.x
  21. Cullen, J. (1967) Atraphaxis L. In: Davis, P.H. (Ed.) Flora of Turkey and the East Aegean islands, vol. 2. Edinbourgh University Press, Edinbourgh, pp. 266–267.
  22. Czukavina, A.P. (1962) The undershrub species of the genus Polygonum from Tajikistan. Izvestiya Akademii Nauk Tadzhikskoi SSR. Otdelenie Estestvennykh Nauk 2 (9): 62–68.
  23. Endress, P.K. (2010) Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. Journal of Systematics and Evolution 48 (4): 225–239. https://doi.org/10.1111/j.1759-6831.2010.00087.x
  24. Fan, D.M., Chen, J.H., Meng, Y., Wen, J., Huang, J.L. & Yang, Y.P. (2013) Molecular phylogeny of Koenigia L. (Polygonaceae: Persicarieae): Implications for classification, character evolution and biogeography. Molecular Phylogenetics and Evolution 69 (3): 1093–1100. https://doi.org/10.1016/j.ympev.2013.08.018
  25. Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.2307/2408678
  26. Ferrandiz, C., Gu, Q., Martienssen, R. & Yanofsky, M.F. (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127 (4): 725–734. https://doi.org/10.1242/dev.127.4.725
  27. Fesenko, N.V. (1968) A genetic factor responsible for the determinate type of plants in buckwheat. Genetika 4: 165–166.
  28. Fesenko, A.N., Fesenko, I.N., Biryukova, O.V. & Shipulin, O.A. (2010) Genetic control of inflorescence number on shoots of buckwheat with determinate growth habit. Doklady Rossiyskoy Akademii Selskokhozyaystvennykh Nauk 1: 9–10.
  29. Filatova, O.V., Pertsev, E.V. & Shatrovskaya, V.I. (1989) Correlation of bud development and flowering dates of trees and shrubs. Byulleten’ glavnogo botanicheskogo sada, Moscow 153: 9–15. Available from: https://www.gbsad.ru/nauchnaya-deyatelnost-arhiv-byulletenej-gbs (accessed 6 November 2024)
  30. Frey, W. & Probst, W. (1986) A synopsis of the vegetation of Iran. In: Kurschner, H. (Ed.) Contributions to the vegetation of Southwest Asia 24. Reichert L., Wiesbaden, Germany, pp. 9–43.
  31. Galle, P. (1977) Untersuchungen zur Blütenentwicktung der Polygonaceen. Botanische Jahrbücher 98: 449–489.
  32. Gatsuk, L.E. (1974) Gemmaxillary plants and the system of subordinate units of their shoot body. Byulleten’ Moskovskogo Obshchestva Ispytatelei Prirody, Otdel. Biologicheskii 79 (1): 100–113. Available from: https://moip-bio.msu.ru/vypuski/ (accessed 6 November 2024)
  33. Gross, H. (1913a) Beiträge zur Kenntnis der Polygonaceen. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie. Leipzig 49 (2): 234–339.
  34. Gross, H. (1913b) Polygonaceae nonnulae novae. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 49 (2): 340–348.
  35. Grudzinskaya, I.A. (1960) Summer shoot formation in trees and its classification. Botanicheskii zhurnal 45 (7): 968–978.
  36. Gubanov, I.A. (1996) Conspectus of Flora of Outer Mongolia: Vascular Plants. Valang, Moscow, 136 pp.
  37. Hagemann, W. (1990) Comparative morphology of acrogenous branch systems and phylogenetic considerations. II. Angiosperms. Acta Biotheoretica 38 (3–4): 207–242. https://doi.org/10.1007/BF00047241
  38. Hagen, K.B. & von & Kadereit, J.W. (2002) Phylogeny and flower evolution of the Swertiinae (Gentianaceae-Gentianeae): Homoplasy and the principle of variable proportions. Systematic Botany 27 (3): 548–572. https://doi.org/10.1043/0363-6445-27.3.548
  39. Hall, T.A. (1999) BioEdit: a user-friendly biological sequence editor alignment and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
  40. Hallé, F., Oldeman, R.A.A. & Tomlinson, P.B. (1978) Tropical trees and forests. An architectural analysis. Springer Verlag, Berlin; Heidelberg & New York, 444 pp.
  41. Harder, L.D. & Prusinkiewicz, P. (2013) The interplay between inflorescence development and function as the crucible of architectural diversity. Annals of Botany 112 (8): 1477–1493. https://doi.org/10.1093/aob/mcs252
  42. Harper, J.L. (1980) Plant demography and ecological theory. Oicos 35: 244–253. https://doi.org/10.2307/3544432
  43. Hartig, R. (1891) Lehrbuch der Anatomie und Physiologie der Pflanzen: unter besonderer Berücksichtigung der Forstgewächse. Springer, Berlin, 308 pp.
  44. Heshmati, G.A. (2007) Vegetation characteristics of four ecological zones of Iran. International Journal of Plant Production 1 (2): 215–224.
  45. Hong, S.-P., Oh, I.-C. & Ronse De Craene, L.P. (2005) Pollen morphology of the genera Polygonum s. str. and Polygonella (Polygoneae: Polygonaceae) Plant Systematics and Evolution 254: 13–30. https://doi.org/10.1007/s00606-005-0334-4
  46. Ivlev, V.I. (2008) Introduction of rare and disappearing plants in Central Kazakhstan. Botanicheskiye Issledovaniya Sibiri i Kazakhstana (Botanical research of Siberia and Kazakhstan) 14: 79–89.
  47. Jaubert, H.-F.C. & Spach, E. (1844–1846) Illustrationes Plantarum Orientalium, vol. 2. Roret, Parisiis, Tabs. 101–200.
  48. Kasirov, K. (2006) State Reserve “Dasti-Zhum”. In: Jashenko, R.V. (Ed.) Strict nature reserves of Central Asia. Nature protected areas of Central Asia, 1. Tethys, Almaty, Kazakhstan, pp. 192–199. Available from: https://www.zin.ru/animalia/coleoptera/rus/midasres.htm (accessed 1 April 2024)
  49. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Research 30: 3059–3066. https://doi.org/10.1093/nar/gkf436
  50. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010
  51. Khosravi, A.R. & Poormahdi, S. (2008) Polygonum khajeh-jamali (Polygonaceae), a new species from Iran. Annales Botanici Fennici 45: 477–480. https://doi.org/10.5735/085.045.0606
  52. Kirchoff, B.K. & Claßen-Bockhoff, R. (2013) Inflorescences: concepts, function, development and evolution. Annals of botany 112 (8): 1471–1476. https://doi.org/10.1093/aob/mct267
  53. Komarov, V.L. (1936) Polygonum L. In: Komarov, V.L. (Ed.) Flora of the URSS (Flora SSSR), vol. 5. Izdatel’stvo Akademii Nauk SSSR, Moscow & Leningrad, pp. 594–701, 717–726.
  54. Kostina, M.V. (2005) Structure and rhythm of generative shoot development in woody plants in accordance with duration of blossoming. Byulleten’ Glavnogo botanicheskogo sada, Moscow 189: 188–208.
  55. Kostina, M.V. & Yurtseva, O.V. (2021) Structure and Developmental Rhythm of Shoot Systems of A. frutescens (L.) K. Koch., A. replicata Lam., and A. pyrifolia Bunge (Atraphaxis L., Polygonaceae). Contemporary Problems of Ecology 14 (3): 241–254. https://doi.org/10.1134/S1995425521030070
  56. Kostina, M.V., Barabanshchikova, N.S. & Pavlova, I.V. (2020) Structural and rhythmological features of shoot systems of species of the genus Tamarix L. (Tamaricaceae), conditioning the adaptation of these species in the Moscow region. Byulleten’ Moskovskogo Obshchestva Ispytatelei Prirody, Otdel Biologicheskii 125 (6): 21–32.
  57. Kostina, M.V., Barabanshchikova, N.S. & Yasinskaya, O.I. (2021) Structural and rhythmic features of shoot systems of species of the genera Spiraea L., Buddleja L., Tamarix L., which determine the adaptation of these species during introduction. In: Fedorov, A.V. (Ed.) Proceedings on the introduction and acclimatization of plants, 1. UdmFITs UB RAS, Izhevsk. pp. 578–582.
  58. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. (2006) World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15 (3): 259–263. https://doi.org/10.1127/0941-2948/2006/0130
  59. Krasnov, A.N. (1888) Opyt istorii razvitiya flory yuzhnoi chasti Vostochnogo Tyan’Shanya (An Essay of the history of development of the Flora in the Southern Part of Eastern Tian Shan). Zapiski Russkogo Geograficheskogo obschestva po obschey geografii 19: 1–413.
  60. Krylova, I.L. & Belyanina, N.B. (1995) On the relationship of morphological structures and rhythms of development of ephemeroids. Byulleten’ Moskovskogo Obshchestva Ispytatelei Prirody, Otdel. Biologicheskii 100 (6): 54–60. Available from: https://moip-bio.msu.ru/vypuski/
  61. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. https://doi.org/10.1093/molbev/msy096
  62. Kusnetzova, T.V. (1988) Angiosperm inflorescences and different types of their structural organization. Flora 181 (1): 1–17.
  63. Kuznetsova, T.V. (1992) On the complementary approaches in inflorescence morphology. Botanicheskii zhurnal 77 (12): 7–24.
  64. Kuznetsova, T.V. & Timonin, A.K. (2017) Sotsvetiye: morfologiya, evolyutsiya, taksonomicheskoye znacheniye. Primeneniye komplementarnykh podkhodov. (Inflorescence: morphology, evolution, taxonomic significance. Application of complementary approaches). KMK Scientific Press, Moscow. 183 pp.
  65. Kuznetsova, T.V., Pryakhina, N.I., Yakovlev, G.P. (1992) Sotsvetiye. Morfologiya i klassifikatsiya (Inflorescence. Morphology and classification). KhFI (chemical-pharmaceutical institute), Saint Petersbourg, 125 pp.
  66. Ledebour, C.F. (1849) Flora Rossica, vol. 3. E. Schwiezerbart, Stuttgart, pp. 866.
  67. Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S. & Yanofsky, M.F. (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. The Plant Cell 11 (6): 1007–1018. https://doi.org/10.1105/tpc.11.6.1007
  68. Linnaeus, C. (1753) Species plantarum, vol. 1. Ed. 1. Salvius, Holmiae, 560 pp.
  69. Lovelius, O.L. (1978) Compositio specierum, Distributio geographica et cohaerentia oecologica generis Atraphaxis L. (Polygonaceae). In: Klokov, M.V. (Ed.) Novitates systematicae plantarum vascularium et non vascularium 14. Naukova dumka, Kiev, pp. 85–108.
  70. Lovelius, O.L. (1979) Synopsis generis Atraphaxis L. (Polygonaceae) (A systematic review of the genus Atraphaxis L.) Novitates systematicae plantarum vascularium 15: 114–128.
  71. Lyashchenko, N.I. (1964) Biologiya spyashchikh pochek (The Biology of dormant buds). Nauka, Moscow & Leningrad, pp. 87.
  72. Ma, Q., Zhang, W. & Xiang, Q.Y. (2017) Evolution and developmental genetics of floral display—a review of progress. Journal of Systematics and Evolution 55 (6): 487–515. https://doi.org/10.1111/jse.12259
  73. Maresquelle, H.J. (1970) Le thème évolutif des complexes d’inflorescences. Son aptitude à susciter des problėmes nouveaux. Bulletin de la Société botanique de France 117 (1–2): 1–4. https://doi.org/10.1080/00378941.1970.10838739
  74. Marfenin, N.N. (2008) Fundamental’nyye zakonomernosti modul’noy organizatsii v biologii (Fundamental patterns of modular organization in biology). Vestnik tverskkogo gosudarstvennogo universiteta. Seriya: biologia i ecologia 9: 147–161.
  75. Marschall von Bieberstein, L.B.Fr. (1819) Flora Taurico-Caucasica, vol. 3. Typis Academicis, Charkov, pp. 654.
  76. Mazurenko, M.T. & Khokhryakov, A.P. (1977) Struktura i morfogenez kustarnikov (Structure and Morphogenesis of Shrubs). Nauka, Moscow, 160 pp.
  77. Meisner, C.F. (1857) Ordo Polygonaceae. In: Candolle, A. de (Ed.) Prodromus systematis naturalis regni vegetabilis, vol. 14 (V). Masson, Parisiis, pp. 141–186. https://doi.org/10.5962/bhl.title.286
  78. Mikhalevskaya, O.B. (1995) Stroyeniye i razvitiye bokovykh syllepticheskikh pobegov u drevesnykh rasteniy i predstavleniye ob elementarnom pobege (The structure and development of lateral sylleptic shoots in woody plants and the concept of an elementary shoot). In: Elenevsky, A.G. (Ed.) Aktual’nye voprosy ekologicheskoi morfologii rastenii (Topical Issues of Ecological Morphology of Plants). Prometei, Moscow, pp. 70–76.
  79. Mikhalevskaya, O.B. & Libatskaya, T.E. (1991) Sravnitel’naya kharakteristika pobegov i pochek vechnozelenykh i listopadnykh vidov magnoliy (Comparative characteristics of shoots and buds of evergreen and deciduous magnolias). Byulleten’ Glavnogo botanicheskogo sada, Moscow 161: 53–58. Available from: https://www.gbsad.ru/nauchnaya-deyatelnost-arhiv-byulletenej-gbs (accessed 6 November 2024)
  80. Müller-Doblies, D. & Weberling, F. (1984) Űber Prolepsis und verwandte Begriffe. Beitrage zur Biologie der Pflanzen 59 (1): 121–144.
  81. Nei, M. & Kumar, S. (2000) Molecular evolution and phylogenetics. Oxford University Press, New York, 329 pp.
  82. Nikitin, A.S. (1966) Drevesnaya i kustarnikovaya rastitel’nost’ pustyn’ SSSR (Arboreal and shrub vegetation of the USSR Deserts). Nauka, Moscow, 185 pp.
  83. Nixon, K.C. (2002) WinClada, version 1.00.08. Published and distributed by the author, New York.
  84. Notov, A.A. (1999) O spetsifike funktsional’noy organizatsii i individual’nogo razvitiya modul’nykh ob”yektov (On the specifics of the functional organization and individual development of modular objects). Zhurnal obshchey biologii 60 (1): 60–79.
  85. Notov, A.A. & Kusnetzova, T.V. (2004) Architectural units, axiality and their taxonomic implications in Alchemillinae. Wulfenia 11: 85–130.
  86. Nukhimovsky, Ye.L. (1997) Osnovy biomorfologii semennykh rasteniy. T. 1. Teoriya organizatsii biomorf. (Fundamentals of biomorphology of seed plants. Vol. 1. Theory of biomorph organization). Nedra, Moscow, 629 pp.
  87. Okamuro, J.K., Szeto, W., Lotys-Prass, C. & Jofuku, K.D. (1997) Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetala1. The Plant Cell 9 (1): 37–47. https://doi.org/10.1105/tpc.9.1.37
  88. Parkin, J. (1914) The evolution of the inflorescence. Botanical Journal of the Linnean society 42 (287): 511–563.
  89. Parcy, F., Bomblies, K. & Weigel, D. (2002) Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development 129: 2519–2527. https://doi.org/10.1242/dev.129.10.2519
  90. Pavlov, N.V. (1970) Atraphaxis L. In: Komarov, V.L. (Ed.) Flora of the U.S.S.R. (Flora SSSR) 5: Izdatel’stvo Akademii Nauk SSSR, Moskva & Leningrad, 1936, pp. 392–527. [Translated from Russian by Dr. N Landau, Israel Program for Scientific Translations, Jerusalem 1970.] Available from: https://www.biodiversitylibrary.org/item/95308#page/451/mode/1up (accessed 15 February 2024)
  91. Pax, F. (1890) Allgemeine Morphologie der Gewächse. Enke, Stuttgart, 277 pp.
  92. Payer, J.-B. (1857) Traité d’organogénie de la fleur. Masson, Paris, 748 pp.
  93. Popov, M.G. (1935) Index seminum Horti Botanici Almaatensis Academiae Scientiaruim, vol. 2. Alma-Ata, 25 pp.
  94. Preston, J.C. (2010) Evolutionary genetics of core eudicot inflorescence and flower development. International Journal of Plant Developmental Biology 4: 17–29.
  95. Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L.D. & Coen, E. (2007) Evolution and development of inflorescence architectures. Science 316 (5830): 1452–1456. https://doi.org/10.1126/science.1140429
  96. Ratcliffe, O.J., Bradley, D.J. & Coen, E.S. (1999) Separation of shoot and floral identity in Arabidopsis. Development 126 (6): 1109–1120. https://doi.org/10.1242/dev.126.6.1109
  97. Raziei, T. (2017) Köppen-Geiger climate classification of Iran and investigation of its changes During 20th Century. Journal of the Earth and space physics 43 (2): 419–439. http://doi.org/10.22059/jesphys.2017.58916.
  98. Rechinger, K.H. & Schiman-Czeika, M. (1968) Polygonaceae. In: Rechinger, K.H. (Ed.) Flora iranica, vol. 56/28. Academishe Druck-u.-Verlagsanstalt, Graz, Austria, pp. 1–88.
  99. Reichenbach, H.G.L. (1832) Flora Germanica excursoria ex affinitare regni vegetabilis. C. Cnobloch, Lipsiae, pp. 435–878. http://doi.org/10.5962/bhl.title.309
  100. Rijpkema, A.S., Vandenbussche, M., Koes, R., Heijmans, K. & Gerats, T. (2010) Variations on a theme: changes in the floral ABCs in angiosperms. Seminars in Cell & Developmental Biology 21 (1): 100–107. http://doi.org/10.1016/j.semcdb.2009.11.002
  101. Schneider, J.V., Bissiengou, P., Maria do Carmo, E.A., Tahir, A., Fay, M.F., Thines, M., Zizka, G. & Chatrou, L.W. (2014) Phylogenetics, ancestral state reconstruction, and a new infrafamilial classification of the pantropical Ochnaceae (Medusagynaceae, Ochnaceae s. str., Quiinaceae) based on five DNA regions. Molecular phylogenetics and evolution 78: 199–214. https://doi.org/10.1016/j.ympev.2014.05.018
  102. Sell, Y. (1969) Les complexes inflorescentiels des quelques Acanthacées. Étude particulière des phènomènes de condensation, de racémisation, d’homogénésation et de troncature. Annales des Sciences Naturelles, Ser. 12 Botanique 10: 225–300.
  103. Serebryakov, I.G. (1952) Morfologiya vegetativnykh organov vysshikh rasteniy (Morphology of vegetative organs of higher plants). “Sovetskaya Nauka”, Moscow, 391 pp.
  104. Serebryakov, I.G. (1955) The main directions of evolution of life forms in angiosperms. Byulleten’ Moskovskogo Obshchestva Ispytatelei Prirody, Otdel. Biologicheskii 60 (3): 71–91.
  105. Serebryakov, I.G. (1962) Ecological morphology of plants. Vysshaya shkola, Moscow, 378 pp.
  106. Serebryakova, T.I. (1983) On some modes of morphological evolution of plants. Zhurnal obshchei biologii. “Nauka”, Moscow 44 (5): 579–593.
  107. Serebryakova, T.I. & Pavlova, N.R. (1986) Pobegoobrazovaniye, ritm razvitiya i vegetativnoye razmnozheniye v sektsii Potentilla L. (Rosaceae) (Shoot formation, developmental rhythm and vegetative reproduction in the section Potentilla L. (Rosaceae)). Botanicheskii zhurnal 71 (2): 154–167.
  108. Serebryakov, I.G., Domanskaya, N.P. & Rodman, L.S. (1954) On the morphogenesis of the life form of a shrub on the example of a hazel tree. Byulleten’ Moskovskogo Obshchestva Ispytatelei Prirody, Otdel. Biologicheskii 59 (2): 57–70.
  109. Shafranova, L.M. (1990) Rasteniye kak zhiznennaya forma (k voprosu o soderzhanii ponyatiya “rasteniye) (Plant as a life form (to the question about the content of the concept “plant”)). Zhurnal obshchey biologii “Nauka”, Moscow 51 (1): 6–7.
  110. Shafranova, L.M. & Gatsuk, L.E. (1994) Rasteniye kak prostranstvenno-vremennaya metamernaya (modul’naya) sistema (Plant as a space-time metameric (modular) system). In: Yelenevskiy, A.G. (Ed.) Uspekhi ekologicheskoy morfologii i yeye vliyaniye na smezhnyye nauki. Prometey, Moscow, pp. 6–7.
  111. Shubin, A.O. (1983) The structure and morphogenesis of the life form of shrubs from the genus Polygonum L. In: Mazurenko, M.T. & Khokhryakov, A.P. (Eds.) Biomorfologiya rastenii dal’nego Vostoka (Biomorphology of Plants of the Far East), Dal’nevost. Nauchn. Tsentr. Akad. Nauk USSR, Vladivostok, pp. 83–88.
  112. Singh, R.K., Bhalerao, R.P. & Maurya, J.P. (2022) When to branch: seasonal control of shoot architecture in trees. The Febs Journal 289 (24): 8062–8070. https://doi.org/10.1111/febs.16227
  113. Sokoloff, D.D., Malyshkina, R.A., Remizowa, M.V., Rudall, P.J., Fomichev, C.I., Fesenko, A.N., Fesenko, I.N. & Logacheva, M.D. (2023) Reproductive development of common buckwheat (Fagopyrum esculentum Moench) and its wild relatives provides insights into their evolutionary biology. Frontiers in Plant Science 13: 1081981. https://doi.org/10.3389/fpls.2022.1081981
  114. Sokolova, N.P. (1973) Morfogenez vegetativnykh organov i zhiznennyye formy v rode Rubus L. (Morphogenesis of vegetative organs and life forms in the genus Rubus L.). Byulleten’ Moskovskogo Obshchestva Ispytatelei Prirody, Otdel. Biologicheskii 78 (6): 84–99.
  115. Späth, H.L. (1912) Der Johannistrieb. Inaugural-Dissertation zur Erlangung der Doktorwürde, Friedrich-Wilhelms-Universität, Berlin, pp. 1–91.
  116. Tang, Z., Ding, Z., White, P.D., Dong, X., Ji, J., Jiang, H., Luo, P. & Wang, X. (2011) Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan. Earth and Planetary Science Letters 302 (3–4): 439–447. https://doi.org/10.1016/j.epsl.2010.12.042
  117. Tavakkoli, S., Osaloo, S.K. & Maassoumi, A.A. (2010) The phylogeny of Calligonum and Pteropyrum (Polygonaceae) based on nuclear ribosomal DNA ITS and chloroplast trnL-F sequences. Iranian Journal of Biotechnology 8: 7–15.
  118. Tavakkoli, S., Osaloo, S.K., Mozaffarian, V. & Maassoumi, A.A. (2013) Atraphaxis radkanensis (Polygonaceae), a new species from Iran. Annales Botanici Fennici 50 (6): 372–374. https:/doi.org/10.5735/085.050.0612
  119. Tavakkoli, S., Kazempour Osaloo, S., Mozaffarian, V. & Maassoumi, A.A. (2015) Molecular phylogeny of Atraphaxis and the woody Polygonum species (Polygonaceae): taxonomic implications based on molecular and morphological evidence. Plant Systematics and Evolution 301 (4): 1157–1170. http:/doi.org/10.1007/s00606-014-1140-7
  120. Teo, Z.W.N., Song, S., Wang, Y.Q., Liu, J. & Yu, H. (2014) New insights into the regulation of inflorescence architecture. Trends in Plant Science 19 (3): 158–165. https://doi.org/10.1016/j.tplants.2013.11.001
  121. Thiers, B. (2024, continuously updated) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium, Bronx. Available from: http://sweetgum.nybg.org/ih/ (Accessed 1 April 2024)
  122. Tomlinson, P.B. (1982) Chance and design in the construction of plants. In: Sattler, R. (Ed.) Axioms and principles of plant construction: Proceedings of a symposium held at the International Botanical Congress, Sydney, Australia, August 1981. Springer, Dordrecht, Netherlands, pp. 162–183. https://doi.org/10.1007/978-94-009-7636-8_9
  123. Tomlinson, P.B. & Gill, A.M. (1973) Growth habits of tropical trees: some guiding principles. In: Meggers, B.J., Ayensu, E.S. & Duckworth, W.D. (Eds.) Tropical Forest Ecosystems in Africa and South America: a comparative review. Smithsonian Institution Press, Washington, D.C., pp. 129–143.
  124. Troll, W. (1935) Vergleichende Morphologie der höher Pflanzen. Springer, Berlin, 235 pp.
  125. Troll, W. (1951) Biomorphologie und Biosystematik als typologische Wissenschaften. Studium Generale 4: 376–389.
  126. Troll, W. (1964) Die Infloreszenzen. Typologie und Stellung im Aufbau des Vegetationskörpers, Bd. 1. VEB Gustav Fischer Verlag, Stuttgart & Jena, 615 pp.
  127. Troll, W. (1969) Die Infloreszenzen. Typologie und Stellung im Aufbau des Vegetationskörpers, Bd. 2. VEB Gustav Fischer Verlag, Jena, 630 pp.
  128. Wang, B., Smith, S.M. & Li, J. (2018) Genetic regulation of shoot architecture. Annual review of plant biology 69: 437–468. https://doi.org/10.1146/annurev-arplant-042817-040422
  129. Webb, D.A. (1964) Atraphaxis L. In: Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M. & Webb, D.A. (Eds.) Flora Europaea, vol. 1. Cambridge University Press, Cambridge, pp. 89.
  130. Weberling, F. (1981) Morphologie der Blüten und der Blütenstände. Ulmer, Stuttgart, pp. 392.
  131. Weberling, F. (1983) Fundamental features of modern inflorescence morphology. Bothalia 14 (3/4): 917–922. https://doi.org/10.4102/abc.v14i3/4.1262
  132. Weberling, F. (1988) The architecture of inflorescences in the Myrtales. Annals of the Missouri Botanical Garden 75 (1): 226–310. https://doi.org/10.2307/2399476
  133. Weberling, F. (1989) Morphology of flowers and inflorescences. Cambridge University Press, London, 405 pp.
  134. Yu, S.X., Gadagkar, S.R., Potter, D., Xu, D.X., Zhang, M. & Li, Z.Y. (2018) Phylogeny of Spiraea (Rosaceae) based on plastid and nuclear molecular data: Implications for morphological character evolution and systematics. Perspectives in Plant Ecology, Evolution and Systematics 34: 109–119. https://doi.org/10.1016/j.ppees.2018.08.003
  135. Yurtseva, O.V. (2006) Struktura sotsvetiy v semeystve Polygonaceae (Inflorescence structure of Polygonaceae). Byulleten’ Moskovskogo Obshchestva Ispytatelei Prirody, Otdel Biologicheskii 111 (2): 48–61. Available from: https://moip-bio.msu.ru/vypuski/ (accessed 6 November 2024)
  136. Yurtseva, O.V. & Mavrodiev, E.V. (2019) Caelestium genus novum (Polygonaceae, Polygoneae): evidence bаsed on the results of molecular phylogenetic analyses of tribe Polygoneae, established with consideration of the secondary structure of the ITS nrDNA regions. Novitates systematicae plantarum vascularium 50: 47–79. https://doi.org/10.31111/novitates/2019.50.47
  137. Yurtseva, O.V., Troitsky, A.V., Bobrova, V.K. & Voylokova, V.N. (2010) On taxonomical revision of Polygonum s.str. (Polygonaceae): phylogenetic and morphological data. Botanicheskii Zhurnal 95 (2): 226–247.
  138. Yurtseva, O.V., Levina, M.S., Severova, E.E. & Troitsky, A.V. (2012) Morphology and taxonomy of Polygonum cognatum Meisn., P. alpestre CA Mey. and allied taxa from Central Asia and the Caucasus (Polygonaceae). Wulfenia 19: 141–180.
  139. Yurtseva, O.V., Severova, E.E. & Bovina, I.Yu. (2014) Pollen morphology and taxonomy of Atraphaxis (Polygoneae, Polygonaceae). Plant Systematics and Evolution 300 (4): 749–766. https://doi.org/10.1007/s00606-013-0917-4
  140. Yurtseva, O.V., Kuznetsova, O.I., Mavrodieva, M.E. & Mavrodiev, E.V. (2016a) What is Atraphaxis L. (Polygonaceae, Polygoneae): cryptic taxa and resolved taxonomic complexity instead of the formal lumping and the lack of morphological synapomorphies. PeerJ 4: e1977: 1–50. http://doi.org/10.7717/peerj.1977
  141. Yurtseva, O.V., Kuznetsova, O.I. & Mavrodiev, E.V. (2016b) A broadly sampled 3-loci plastid phylogeny of Atraphaxis (Polygoneae, Polygonoideae, Polygonaceae) reveals new taxa: I. Atraphaxis kamelinii spec. nov. from Mongolia. Phytotaxa 268 (1): 1–24. https://doi.org/10.11646/phytotaxa.268.1.1
  142. Yurtseva, O.V., Severova, E.E. & Mavrodiev, E.V. (2017) Persepolium (Polygoneae): A new genus in Polygonaceae based on conventional Maximum Parsimony and Three-taxon statement analyses of a comprehensive morphological dataset. Phytotaxa 314 (2): 151–194. https://doi.org/10.11646/phytotaxa.314.2.1
  143. Yurtseva, O.V., Lazkov, G.A., Ukrainskaja, U.A. & Deviatov, A.G. (2019) Caelestium (Polygonaceae, Polygoneae), evidence bаsed on morphology. Novitates systematicae plantarum vascularium 50: 80–100. https://doi.org/10.31111/novitates/2019.50.80
  144. Yurtseva, O.V., Deviatov, A.G. & Sokoloff, D.D. (2022a) Exocarp structure in the genus Atraphaxis (Polygonaceae, Polygoneae). Plant Systematics and Evolution 308 (5): 1–25. https://doi.org/10.1007/s00606-022-01824-0
  145. Yurtseva, O.V., Vasilieva, N.V., Kostikova, V.A. & Samigullin, T.H. (2022b) A broadly sampled 3-loci plastid phylogeny of Atraphaxis (Polygoneae, Polygonoideae, Polygonaceae) reveals new taxa: III. A. kuvaevii and сryptic species in A. pungens from Southern Siberia and Northern Mongolia. Phytotaxa 566 (1): 13–63. https://doi.org/10.11646/PHYTOTAXA.566.1.2
  146. Zhang, M.-L., Sanderson, S.C., Sun, Y.-X., Byalt, V.V. & Hao, X.-L. (2014) Tertiary montane origin of the Central Asian flora: evidence inferred from cpDNA sequences of Atraphaxis (Polygonaceae). Journal of integrative Plant Biology 56 (12): 1125–1135. https://doi.org/10.1111/jipb.12226
  147. Zhang, Z. & Sun, J. (2011) Palynological evidence for Neogene environmental change in the foreland basin of the southern Tianshan range, northwestern China. Global and Planetary Change 75 (1–2): 56–66. https://doi.org/10.1016/j.gloplacha.2010.10.006
  148. Zhmylev, P.Yu., Alexeev, Yu.E., Karpukhina, E.A. & Balandin, S.A. (2005) Plant Biomorphology: An Illustrated Dictionary. Tutorial. 2nd ed. Moscow, 265 pp.