Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-07-02
Page range: 55-67
Abstract views: 256
PDF downloaded: 14

Taxonomic revision of Idesia (Salicaceae) from China

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang Jiangxi, 332900, China
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Idesia Salicaceae taxonomy Eudicots

Abstract

The relationship among the species of the genus Idesia Maximowicz is unclear. Related literature and books record one species in this genus: Idesia polycarpa Maxim. Five varieties are identified: I. polycarpa var. vestita Diels, Idesia polycarpa var. latifolia Diels, Idesia polycarpa var. intermedia Pampanini, I. polycarpa var. fujianensis (G.S. Fan) S.S. Lai, and I. polycarpa var. longicarpa S.S. Lai, which are distributed in China. We extensively examined specimens and conducted field investigations, comparing the taxonomic characteristics of four taxa within the Idesia genus: I. polycarpa, I. polycarpa var. vestita, I. polycarpa var. fujianensis, and I. polycarpa var. longicarpa. We utilised principal component analysis (PCA) and scanning electron microscopy (SEM) to assess their distinctive features while analysing their geographical distribution based on sample data points. Additionally, we conducted phylogenetic relationship reconstructions among these taxa. The results showed that seven identification characters, such as leaf length and width, fruit length and diameter, and fruit stalk length of the four taxa of Idesia, formed one group in the scatter plot. The measurement of related quantitative traits of I. polycarpa var. vestita, I. polycarpa var. longicarpa, and I. polycarpa var. fujianensis showed that they were all within the range of variation of I. polycarpa. The results of electron microscope scanning showed that the leaf epidermis pattern, stomata shape, and inner edge of the outer arch of stomata were similar among the four. Only the morphology of the waxy layer on the back of the cotyledons of I. polycarpa var. fujianensis differed from that of the other three. The geographic distribution areas of the four groups also overlapped. The phylogenetic tree topology of Idesia, obtained by the maximum likelihood method (ML) and Bayesian inference method (BI), was consistent, indicating that the genus Idesia is monophyletic and divided into three main clades. I. polycarpa and I. polycarpa var. vestita were nonmonophyly. Based on the type specimens, original literature, and our research results, we propose that I. polycarpa var. vestita, I. polycarpa var. fujianensis, and I. polycarpa var. longicarpa should be reduced to a synonym of I. polycarpa.

References

  1. Ai, J. (2020) National treasure in need of development and utilization—review of China oil grape industry development report (2016–2020). Forestry Industry 196: 44–46.
  2. Ayres, D.L., Darling, A.& Zwickl, D.J. (2012) Beagle: an application programming interface and highper formance computing library for statistical phylogenetics. Systematic Biology 61: 170–173. https://doi.org/10.1093/sysbio/syr100
  3. Candolle, A.P. (1824) Prodromus Systematis Naturalis Regni Vegetabilis. Pars Ⅰ. Treuttel & Würtz, Paris, 255 pp.
  4. Carrière, É.A. (1868) Polycarpa Maximowiczii. Revue Horticole 40: 330–331.
  5. Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  6. Chen, J.-H., Sun, H. & Yang, Y.-P. (2008) Leaf epidermal microfeatures of Salix (Salicaceae) under scanning electronic microscope and its taxonomical significance. Acta Botanica Yunnanica 30: 38–46.
  7. Dai, G.-F., Xie, S.-Y. & Wan, T. (2011) Prospect and prospect of development and utilization of Idesia (Flacourtiaceae). Journal of Chongqing Three Gorges University 27: 105–109.
  8. Diels, F.L.E. (1900) Die flora von Central-China. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 29: 478.
  9. Fan, G.-S. (1995) A systematical study of Flacourtiaceae in China. Journal of Southwest Forest College 15: 1–59.
  10. Fang, X.-P., Li, X., Lu, H.-L. & Shi, X.-M. (2019) Development and utilization of Idesia polycarpa Maxim(Salicaceae) industry in China. China Oils and Fats 44: 86–98.
  11. Guo, Q., Zhang, Z.-X. & Zhu, C. (2014) Leaf epidermal microfeatures of Salix sect. denticulatae in China and its taxonomical significance. Journal of Northeast Forestry University 42: 53–58.
  12. Huang, H.-W., Raven, P.-H., Wang, L.-S., Liao, J.-P. & Zhan, Q.-Q. (2023) China-The role of botanical gardens in conservation. The Innovation 4: 100433.
  13. IBM Corp. (2020) IBM SPSS Statistics for Windows (Version 27.0) [Computer software]. IBM Corp.
  14. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
  15. James, W.B., Mark, W.C., Maarten, J.M.C., Michael, F.F., Walter, S.J., David, J.M., Alexander, N.S., Douglas, E.S., Pamela, S.S., Peter, F.S., Samuel, B., Alain, C., John, C.C., John, C., Elspeth, H., Michael, M., Michael, M., Richard, O., Mathieu, P., Laurence, S., James, S., David, T., Maria, V. & Anton, W. (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20. https://doi.org/10.1111/boj.12385
  16. Jin, J.-J., Yu, W.-B., Yang, J.-B., Song, Y., dePamphilis, C.W., Yi, T.-S. & Li, D.-Z. (2020) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21: 241–272. https://doi.org/10.1186/s13059-020-02154-5
  17. Jin, S.-Y. (1999) A Catalog of Type Specimens (Cormophyta) in Herbaria of China (Zhongguo gao deng zhi wu mo shi biao ben hui bian) [Suppl.]. Science Press, Beijing, 88 pp.
  18. Lai, S.-S. (1994) Study material on Flacourtiaceae of China. Bulletin of Botanical Research 14: 227–228.
  19. Lai, S.-S. (1999) Flacourtiaceae. In: Gu, C.Z. (Ed.) Flora Reipublicae Popularis Sinicae. Science Press, Beijing, pp. 56–59.
  20. Larsson, A. (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30: 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
  21. Li, D.-W., Gong, B.-C., Bai, J.-J., Peng, J.-L. & Chen, H.-X. (2010) Genetic diversity of phenotypic traits in natural groups of Idesia polycarpa. Hunan Agricultural Sciences 11: 7–9.
  22. Li, H. (2013) Aligning sequence reads clone sequences and assembly contigs with BWA-MEM. ArXiv. [Preprint]
  23. Li, X. (2019) Current situation and prospect of oil grape industry in China. China Forestry industry Z2: 68–73.
  24. Linnaeus, C. (1753) Species Plantarum. Impensis Laurentii Salvii, Holmiae, pp. 1015–1035.
  25. Liu, X., Wang, Z.-S., Wang, D.-S. & Zhang, J.-G. (2016) Phylogeny of Populus Salix (Salicaceae) and their relative genera using molecular datasets. Biochemical Systematics and Ecology 68: 210–215. https://doi.org/10.1016/j.bse.2016.07.016
  26. Maximowicz, C.J. (1866) Decas prima—Idesia n. gen. Flacourtiaceae, Eu-Flacourtieae. Bulletin de l’Académie Impériale des Sciences de St-Pétersbourg 10: 485.
  27. Mayebara, K. (1931) Florula Austro-Higoensis. Publication Not Seen, Minamata (Kumamoto Prefecture), 86 pp.
  28. Nature Editorial (2021a) Botanical gardens’ growing role in conservation. Nature Available from: https://www.nature.com/articles/d42473-021-00376-0 (accessed 23 June 2025)
  29. Nature Editorial (2021b) China points the way to biodiversity protection. Nature Available from: https://www.nature.com/articles/d42473-021-00375-1 (accessed 23 June 2025)
  30. Pampanini, R. (1910) Nuovo Giornale Botanico Italiano, Nuova Serie. Sine Nomine, Firenze, 673–674 pp.
  31. Qu, X.-J., Moore, M.J., Li, D.-Z. & Yi, T.-S. (2019) PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15: 50–62. https://doi.org/10.1186/s13007-019-0435-7
  32. Ren, H. & Antonelli, A. (2023) National botanical gardens at the forefront of global plant diversity conservation. The Innovation 4: 100478.
  33. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Software for Systematics and Evolution 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  34. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675. https://doi.org/10.1038/nmeth.2089
  35. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  36. Sui, L.-Y., Liu, X.-M., Li, Z.-Q. & Xiao, B. (2009) Natural variation and variation types of fruit characters of Idesia polycarpa Maxim. Journal of Northwest A & F University 37: 115–120.
  37. Wang, G., Wang, S. & Zou, L. (2017) Development and utilization of wood oil tree Idesia polycarpa(Salicaceae). Hubei Forestry Science and Technology 46: 29–31.
  38. Wang, J.-X. & Wu, Z.-X. (2010) Research on development and utilization of Idesia polycarpa (Flacourtiaceae). Journal of Sichuan Forestry Science and Technology 31: 26–29.
  39. Wick, R.R., Schultz, M.B. & Zobel, J. (2015) Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31: 3350–3352. https://doi.org/10.1093/bioinformatics/btv383
  40. Wang, Q. & Hong, D.-Y. (2022) Understanding the plant diversity on the roof of the world. The Innovation 3: 100215.
  41. Wu, L.-L., Deng, W.-F., Lu, X.-Y., Niu, C.-T., Tian, H. & Li, Z. (2023) Research progress in the development and utilization of Idesia polycarpa. Non-wood Forest Research 41: 242–252.
  42. Yang, Q.-E., Sue, Z. (2007) Flacourtiaceae. In: Wu, C.Y., Raven, P.H. & Hong, D.Y. (Eds.) Flora of China (Clusiaceae through Araliaceae). Science Press & Missouri Botanical Garden Press, Beijing & St. Louis, pp. 124–125.
  43. Yu, W.-B., Wang, H., Li, D.-Z. (2011) Names of Chinese seed plants validly published in a catalogue of type specimens (Cormophyta) in the herbaria of China and its two supplements. Taxon 60: 1168–1172. https://doi.org/10.1002/tax.604019
  44. Zhang, D., Gao, F. & Jakovlic, I. (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20: 348–355. https://doi.org/10.1111/1755-0998.13096
  45. Zuo, Y., Liu, H.-B., Li, B., Zhao, H., Li, X.-L., Chen, J.-T., Wang, L., Zheng, Q.-B., He, Y.-Q., Zhang, J.-S., Wang, M.-X., Liang, C.-Z, Wang, L. (2024) The Idesia polycarpa genome provides insights into its evolution and oil biosynthesis. Cell Reports 43: 113909.

How to Cite

Wu, X.-X., Xu, C., Liang, T.-J. & Li, X. (2025) Taxonomic revision of Idesia (Salicaceae) from China. Phytotaxa 708 (1): 55–67. https://doi.org/10.11646/phytotaxa.708.1.5