Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-05-02
Page range: 157-168
Abstract views: 63
PDF downloaded: 7

Absidia thailandica sp. nov., an addition to the diversity of soil fungi from Thailand

Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand, School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand, School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand, School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
Fungi biodiversity fungal ecology new taxa taxonomy

Abstract

Absidia is ubiquitous and plays a critical function in biotechnology and medicine. It is characterized by single sporangiophores, in pairs or groups on stolons, bearing apophysate and pyriform sporangia with a deliquescent wall. This study isolated and proposed Absidia thailandica sp. nov. as an addition to Mucorales from Thailand. Phylogenetic analyses of IITS + LSU rDNA data showed that this species is related to A. ovalispora and A. soli. However, it differs from A. ovalispora by the absence of swollen parts on the sporangiophores and shape of rhizoids and can be distinguished from A. soli by the shape of rhizoids, size of sporangiospores and shape and size of columellae. This study expands the diversity of soil fungi in Thailand.

References

  1. Albert, Q., Leleyter, L., Lemoine, M., Heutte, N., Rioult, J.-P., Sage, L., Baraud, F. & Garon, D. (2018) Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere 196: 386–392. https://doi.org/10.1016/j.chemosphere.2017.12.156
  2. Alfaro, M.E., Zoller, S. & Lutzoni, F. (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov Chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution 20: 255–266. https://doi.org/10.1093/molbev/msg028
  3. Angelini, P., Rubini, A., Gigante, D., Reale, L., Pagiotti, R. & Venanzoni, R. (2012) The endophytic fungal communities associated with the leaves and roots of the common reed (Phragmites australis) in Lake Trasimeno (Perugia, Italy) in declining and healthy stands. Fungal Ecology 5: 683–693. https://doi.org/10.1016/j.funeco.2012.03.001
  4. Ariyawansa, H.A., Hyde, K.D., Jayasiri, S.C., Buyck, B., Chethana, K.W.T., Dai, D.Q., Dai, Y.C., Daranagama, D.A., Jayawardena, R.S., Lücking, R., Ghobad-Nejhad, M., Niskanen, T., Thambugala, K.M., Voigt, K., Zhao, R.L., Li, G.J., Doilom, M., Boonmee, S., Yang, Z.L., Cai, Q., Cui, Y.Y., Bahkali, A.H., Chen, J., Cui, B.K., Chen, J.J., Dayarathne, M.C., Dissanayake, A.J., Ekanayaka, A.H., Hashimoto, A., Hongsanan, S., Jones, E.B.G., Larsson, E., Li, W.J., Li, Q.R., Liu, J.K., Luo, Z.L., Maharachchikumbura, S.S.N., Mapook, A., McKenzie, E.H.C., Norphanphoun, C., Konta, S., Pang, K.L., Perera, R.H., Phookamsak, R., Phukhamsakda, C., Pinruan, U., Randrianjohany, E., Singtripop, C., Tanaka, K., Tian, C.M., Tibpromma, S., Abdel-Wahab, M.A., Wanasinghe, D.N., Wijayawardene, N.N., Zhang, J.F., Zhang, H., Abdel-Aziz, F.A., Wedin, M., Westberg, M., Ammirati, J.F., Bulgakov, T.S., Lima, D.X., Callaghan, T.M., Callac, P., Chang, C.H., Coca, L.F., Dal-Forno, M., Dollhofer, V., Fliegerová, K., Greiner, K., Griffith, G.W., Ho, H.M., Hofstetter, V., Jeewon, R., Kang, J.C., Wen, T.C., Kirk, P.M., Kytövuori, I., Lawrey, J.D., Xing, J., Li, H., Liu, Z.Y., Liu, X.Z., Liimatainen, K., Lumbsch, H.T., Matsumura, M., Moncada, B., Nuankaew, S., Parnmen, S., de Azevedo Santiago, A.L.C.M., Sommai, S., Song, Y., de Souza, C.A.F., de Souza-Motta, C.M., Su, H.Y., Suetrong, S., Wang, Y., Wei, S.F., Wen, T.C., Yuan, H.S., Zhou, L.W., Réblová, M., Fournier, J., Camporesi, E., Luangsa-ard, J.J., Tasanathai, K., Khonsanit, A., Thanakitpipattana, D., Somrithipol, S., Diederich, P., Millanes, A.M., Common, R.S., Stadler, M., Yan, J.Y., Li, X.H., Lee, H.W., Nguyen, T.T.T., Lee, H.B., Battistin, E., Marsico, O., Vizzini, A., Vila, J., Ercole, E., Eberhardt, U., Simonini, G., Wen, H.A., Chen, X.H., Miettinen, O., Spirin, V. & Hernawati (2015) Fungal diversity notes 111–252 - taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75: 27–274. https://doi.org/10.1007/s13225-015-0346-5
  5. Arx, J.V. (1982) On Mucoraceae s. str. and other families of the Mucorales. Sydowia 35: 10–26.
  6. Ashkezari, S.J. & Fotouhifar, K. (2017) Diversity of endophytic fungi of common yew (Taxus baccata L.) in Iran. Mycological Progress 16: 247–256. https://doi.org/10.1007/s11557-017-1274-4
  7. Baldrian, P., Větrovský, T., Lepinay, C. & Kohout, P. (2022) High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Diversity 114: 539–547. https://doi.org/10.1007/s13225-021-00472-y
  8. Benny, G.L. (2005) Zygomycetes. Available from: http://www.zygomycetes.org (accessed 1 August 2023)
  9. Benny, G.L. (2009) Zygomycetes. Available from: http://www.zygomycetes.org (accessed 1 August 2023)
  10. Benny, G.L., Humber, R.A. & Morton, J.B. (2001) Zygomycota: Zygomycetes. In: McLaughlin, D.J., McLaughlin, E.G. & Lemke, P.A. (Eds.) Systematics and Evolution. Heidelberg, Springer, Berlin, pp. 113–146. https://doi.org/10.1007/978-3-662-10376-0_6
  11. Bonanomi, G., Capodilupo, M., Incerti, G., Gaglione, S.A. & Scala, F. (2014) Fungal diversity increases soil fungistasis and resistance to microbial invasion by a non resident species. Biological Control 72: 38–45. https://doi.org/10.1016/j.biocontrol.2014.02.005
  12. Capella–Gutiérrez, S., Silla–Martínez, J.M. & Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  13. Chen, J., Fan, F., Qu, G., Tang, J., Xi, Y., Bi, C., Sun, Z. & Zhang, X. (2020) Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. Metabolic Engineering 57: 31–42. https://doi.org/10.1016/j.ymben.2019.10.006
  14. Chethana, K.T., Manawasinghe, I.S., Hurdeal, V.G., Bhunjun, C.S., Appadoo, M.A., Gentekaki, E., Raspé, O., Promputtha, I. & Hyde, K.D. (2021) What are fungal species and how to delineate them? Fungal Diversity 109: 1–25. https://doi.org/10.1007/s13225-021-00483-9
  15. Churko, J.M., Mantalas, G.L., Snyder, M.P. & Wu, J.C. (2013) Overview of high throughput sequencing technologies to elucidate molecular pathways in cardiovascular diseases. Circulation Research 112: 1613–1623. https://doi.org/10.1161/CIRCRESAHA.113.300939
  16. Dissanayake, A.J., Bhunjun, C.S., Maharachchikumbura, S.S.N. & Liu, J.K. (2020) Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 11: 2652–2676. https://doi.org/10.5943/mycosphere/11/1/18
  17. Eucker, J., Sezer, O., Graf, B. & Possinger, K. (2001) Mucormycoses. Mycoses 44: 253–260. https://doi.org/10.1111/j.1439-0507.2001.00656.x
  18. Frac, M., Hannula, S.E., Bełka, M. & Jędryczka, M. (2018) Fungal biodiversity and their role in soil health. Frontiers in Microbiology 9: 707. https://doi.org/10.3389/fmicb.2018.00707
  19. Gil-Martínez, M., López-García, Á., Domínguez, M.T., Kjøller, R., Navarro-Fernández, C.M., Rosendahl, S. & Marañón, T. (2021) Soil fungal diversity and functionality are driven by plant species used in phytoremediation. Soil Biology and Biochemistry 153: 108102. https://doi.org/10.1016/j.soilbio.2020.108102
  20. Hawksworth, D.L. & Lücking, R. (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum 5: 10–1128. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016
  21. Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192. https://doi.org/10.1093/sysbio/42.2.182
  22. Hoffmann, K. & Voigt, K. (2009) Absidia parricida plays a dominant role in biotrophic fusion parasitism among mucoralean fungi (Zygomycetes): Lentamyces, a new genus for A. parricida and A. zychae. Plant Biology 11: 537–554. https://doi.org/10.1111/j.1438-8677.2008.00145.x
  23. Hoffmann, K., Discher, S. & Voigt, K. (2007) Revision of the genus Absidia (Mucorales, Zygomycetes) based on physiological phylogenetic and morphological characters; thermotolerant Absidia spp. form a coherent group, Mycocladiaceae fam.nov. Mycological Research 111: 1169–1183. https://doi.org/10.1016/j.mycres.2007.07.002
  24. Hoffmann, K. (2010) Identification of the genus Absidia (Mucorales, Zygomycetes): a comprehensive taxonomic revision. In: Gherbawy, Y. & Voigt, K. (Eds.) Molecular Identification of Fungi. Springer, Berlin, Heidelberg, pp. 439–460. https://doi.org/10.1007/978-3-642-05042-8_19
  25. Hurdeal, V.G., Gentekaki, E., Lee, H.B., Jeewon, R., Hyde, K.D., Tibpromma, S., Mortimer, P.E. & Xu, J. (2021) Mucoralean fungi in Thailand: Novel species of Absidia from tropical forest soil. Cryptogamie, Mycologie 42: 39–61. https://doi.org/10.5252/cryptogamie-mycologie2021v42a4
  26. Hyde, K.D., Jeewon, R., Chen, Y.J., Bhunjun, C.S., Calabon, M.S., Jiang, H.B., Lin, C.G., Norphanphoun, C., Sysouphanthong, P., Pem, D. & Tibpromma, S. (2020) The numbers of fungi: is the descriptive curve flattening? Fungal Diversity 103: 271. https://doi.org/10.1007/s13225-020-00458-2
  27. Index Fungorum (2023) Available from: http://indexfungorum.org/ (accessed 10 December 2023)
  28. Jayasiri, S.C., Hyde, K.D., Ariyawansa, H.A., Bhat, J., Buyck, B., Cai, L., Dai, Y.C., Abd-Elsalam, K.A., Ertz, D., Hidayat, I., Jeewon, R., Jones, E.B.G., Bahkali, A.H., Karunarathna, S.C., Liu, J.K., Luangsa-ard, J.J., Lumbsch, H.T., Maharachchikumbura, S.S.N., McKenzie, E.H.C., Moncalvo, J.M., Ghobad-Nejhad, M., Nilsson, H., Pang, K.L., Pereira, O.L., Phillips, A.J.L., Raspé, O., Rollins, A.W., Romero, A.I., Etayo, J., Selçuk, F., Stephenson, S.L., Suetrong, S., Taylor, J.E., Tsui, C.K.M., Vizzini, A., Abdel-Wahab, M.A., Wen, T.C., Boonmee, S., Dai, D.Q., Daranagama, D.A., Dissanayake, A.J., Ekanayaka, A.H., Fryar, S.C., Hongsanan, S., Jayawardena, R.S., Li, W.J., Perera, R.H., Phookamsak, R., de Silva, N.I., Thambugala, K.M., Tian, Q., Wijayawardene, N.N., Zhao, R.L., Zhao, Q., Kang, J.C. & Promputtha, I. (2015). The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal diversity 74: 3–18. https://doi.org/10.1007/s13225-015-0351-8
  29. Jurburg, S.D., Keil, P., Singh, B.K. & Chase, J.M. (2021) All together now: Limitations and recommendations for the simultaneous analysis of all eukaryotic soil sequences. Molecular Ecology Resources 21: 1771. https://doi.org/10.1111/1755-0998.13401
  30. Kaczmarek, M.B., Struszczyk-Swita, K., Li, X., Szczęsna-Antczak, M. & Daroch, M. (2019) Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Frontiers in Bioengineering and Biotechnology 7: 243. https://doi.org/10.3389/fbioe.2019.00243
  31. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1166. https://doi.org/10.1093/bib/bbx108
  32. Leitão, J.D., Cordeiro, T.R., Nguyen, T.T., Lee, H.B., Gurgel, L.M. & Santiago, A.L.D.A. (2021) Absidia aguabelensis sp. nov.: A new mucoralean fungi isolated from a semiarid region in Brazil. Phytotaxa 516 (1): 83–91. https://doi.org/10.11646/phytotaxa.516.1.6
  33. Lima, D.X., Cordeiro, T.R., De Souza, C.A., De Oliveira, R.J., Lee, H.B., Souza-Motta, C.M. & Santiago, A.L.D.A. (2020) Morphological and molecular evidence for two new species of Absidia from Neotropic soil. Phytotaxa 446 (1): 61–71. https://doi.org/10.11646/phytotaxa.446.1.8
  34. Liu, S., Garcia-Palacios, P., Tedersoo, L., Guirado, E., van der Heijden, M.G., Wagg, C., Chen, D., Wang, Q., Wang, J., Singh, B.K. & Delgado-Baquerizo, M., (2022) Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nature Ecology & Evolution 6: 900–909. https://doi.org/10.1038/s41559-022-01756-5
  35. Lücking, R., Aime, M.C., Robbertse, B., Miller, A.N., Aoki, T., Ariyawansa, H.A., Cardinali, G., Crous, P.W., Druzhinina, I., Geiser, D.M., Hawksworth, D.L., Hyde, K.D., Irinyi, L., Jeewon, R., Johnston, P.R., Kirk, P.M., Malosso, E., May, T.W., Meyer, W., Nilsson, H.R., Öpik, M., Robert, V., Stadler, M., Thines, M., Vu, D., Yurkov, A.M., Zhang, N. & Schoch, C.L. (2021) Fungal taxonomy and sequence-based nomenclature. Nature Microbiology 6: 540–548. https://doi.org/10.1038/s41564-021-00888-x
  36. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE) 2010: 1– 8. https://doi.org/10.1109/GCE.2010.5676129
  37. Rambaut, A. (2012) FigTree v 1.3.1. [Online]. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 2 August 2023)
  38. Rannala, B. & Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journalof Molecular Evolution 43: 304–311. https://doi.org/10.1007/PL00006090
  39. Richardson, M. (2009) The ecology of the Zygomycetes and its impact on environmental exposure. Clinical Microbiology and Infection 15: 2–9. https://doi.org/10.1111/j.1469-0691.2009.02972.x
  40. Spatafora, J.W., Chang, Y., Benny, G.L., Lazarus, K., Smith, M.E., Berbee, M.L., Bonito, G., Corradi, N., Grigoriev, I., Gryganskyi, A., James, T.Y., O’Donnell, K., Roberson, R.W., Taylor, T.N., Uehling, J., Vilgalys, R., White, M.M. & Stajich, J.E. (2016) A phylum–level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108: 1028–1046. https://doi.org/10.3852/16-042
  41. Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758–771. https://doi.org/10.1080/10635150802429642
  42. Tedersoo, L., Mikryukov, V., Anslan, S., Bahram, M., Khalid, A.N., Corrales, A., Agan, A., Vasco-Palacios, A.M., Saitta, A., Antonelli, A., Rinaldi, A.C., Verbeken, A., Sulistyo, B.P., Tamgnoue, B., Furneaux, B., Ritter, C.D., Nyamukondiwa, C., Sharp, C., Marín, C., Dai, D.Q., Gohar, D., Sharmah, D., Biersma, E.M., Cameron, E.K., Crop, E.D., Otsing, E., Davydov, E.A., Albornoz, F.E., Brearley, F.Q., Buegger, F., Gates, G., Zahn, G., Bonito, G., Hiiesalu, I., Hiiesalu, I., Zettur, I., Barrio, I.C., Pärn, J., Heilmann-Clausen, J., Ankuda, J., Kupagme, J.Y., Sarapuu, J., Maciá-Vicente, J.G., Fovo, J.D., Geml, J., Alatalo, J.M., Alvarez-Manjarrez, J., Monkai, J., Põldmaa, K., Runnel, K., Adamson, K., Bråthen, K.A., Pritsch, K., Tchan, K.I., Armolaitis, K., Hyde, K.D., Newsham, K.K., Panksep, K., Adebola, L.A., Lamit, L.J., Saba, M., da Silva Cáceres, M.E., Tuomi, M., Gryzenhout, M., Bauters, M., Bálint, M., Wijayawardene, N., Hagh-Doust, N., Yorou, N.S., Kurina, O., Mortimer, P.E., Meidl, P., Nilsson, R.H., Puusepp, R., Casique-Valdés, R., Drenkhan, R., Garibay-Orijel, R., Godoy, R., Alfarraj, S., Rahimlou, S., Põlme, S., Dudov, S.V., Mundra, S., Ahmed, T., Netherway, T., Henkel, T.W., Roslin, T., Fedosov, V.E., Onipchenko, V.G., Yasanthika, E., Lim, Y.W., Piepenbring, M., Klavina, D., Kõljalg, U. & Abarenkov, K. (2022) Global patterns in endemicity and vulnerability of soil fungi. Global Change Biology 28: 6696–6710.
  43. Tedersoo, L., Mikryukov, V., Anslan, S., Bahram, M., Khalid, A.N., Corrales, A., Agan, A., Vasco-Palacios, A.M., Saitta, A., Antonelli, A., Rinaldi, A.C., Verbeken, A., Sulistyo, B.P., Tamgnoue, B., Furneaux, B., Ritter, C.D., Nyamukondiwa, C., Sharp, C., Marín, C., Dai, D.Q., Gohar, D., Sharmah, D., Biersma, E.M., Cameron, E.K., Crop, E.D., Otsing, E., Davydov, E.A., Albornoz, F.E., Brearley, F.Q., Buegger, F., Gates, G., Zahn, G., Bonito, G., Hiiesalu, I., Hiiesalu, I., Zettur, I., Barrio, I.C., Pärn, J., Heilmann-Clausen, J., Ankuda, J., Kupagme, J.Y., Sarapuu, J., Maciá-Vicente, J.G., Fovo, J.D., Geml, J., Alatalo, J.M., Alvarez-Manjarrez, J., Monkai, J., Põldmaa, K., Runnel, K., Adamson, K., Bråthen, K.A., Pritsch, K., Tchan, K.I., Armolaitis, K., Hyde, K.D., Newsham, K.K., Panksep, K., Adebola, L.A., Lamit, L.J., Saba, M., da Silva Cáceres, M.E., Tuomi, M., Gryzenhout, M., Bauters, M., Bálint, M., Wijayawardene, N., Hagh-Doust, N., Yorou, N.S., Kurina, O., Mortimer, P.E., Meidl, P., Nilsson, R.H., Puusepp, R., Casique-Valdés, R., Drenkhan, R., Garibay-Orijel, R., Godoy, R., Alfarraj, S., Rahimlou, S., Põlme, S., Dudov, S.V., Mundra, S., Ahmed, T., Netherway, T., Henkel, T.W., Roslin, T., Fedosov, V.E., Onipchenko, V.G., Yasanthika, E., Lim, Y.W., Piepenbring, M., Klavina, D., Kõljalg, U. & Abarenkov, K. (2021) The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity 111: 588. https://doi.org/10.1007/s13225-021-00493-7
  44. Van Tieghem, P. (1876) Troisième mémoire sur les Mucorinées. Annales des Sciences naturelles. Botanique Ser. VI 4: 312–398.
  45. Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  46. Voigt, K., James, T.Y., Kirk, P.M., Santiago, A.L.C.M. de A., Waldman, B., Griffith, G.W., Fu, M., Radek, R., Strassert, J.F.H., Wurzbacher, C., Jerônimo, G.H., Simmons, D.R., Seto, K., Gentekaki, E., Hurdeal, V.G., Hyde, K.D., Nguyen, T.T.T. & Lee, H.B. (2021) Early-diverging fungal phyla: taxonomy species concept ecology distribution anthropogenic impact and novel phylogenetic proposals. Fungal Diversity 109: 1–40. https://doi.org/10.1007/s13225-021-00480-y
  47. White, T.J., Burns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & Whitish, T.J. (Eds.) PCR Protocols a Guide to Methods and Applications. Academic Press, San Diego, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  48. Wijayawardene, N.N., Hyde, K.D., Dai, D.Q., Sánchez-García, M., Goto, B.T. & Magurno, F. (2022) Outline of Fungi and fungus-like taxa–2021. Mycosphere 13: 53–453. https://doi.org/10.5943/mycosphere/13/1/2
  49. Wijayawardene, N.N., Phillips, A.J.L., Pereira, D.S., Dai, D.Q., Aptroot, A., Monteiro, J.S., Druzhinina, I.S., Cai, F., Fan, X., Selbmann, L., Coleine, C., Castañeda-Ruiz, R.F., Kirk, P.M., Kumar, K.C.R., Arachchi, I.S.L, Suwannarach, N., Tang, L.Z., Jayasinghe, R.P.P.K. & Thines, M. (2022) Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). Fungal Diversity 114: 463–490. https://doi.org/10.1007/s13225-022-00500-5
  50. Wu, B., Hussain, M., Zhang, W., Stadler, M., Liu, X. & Xiang, M. (2019) Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10: 127–140. https://doi.org/10.1080/21501203.2019.1614106
  51. Yasanthika, W.A.E., de Farias, A.R.G., Wanasinghe, D.N., Chethana, K.W.T., Zare, R., Cai, L., Maharachchikumbura, S.S., Tennakoon, D.S., Perera, R.H., Luangharn, T. & Chomnunti, P. (2023) https://soilfun.org/, a web-based platform for soil-inhabiting Ascomycota species. Studies in Fungi 8: 1–8. https://doi.org/10.48130/SIF-2023-0016
  52. Yasanthika, W.A.E., Wanasinghe, D.N., Mortimer, P.E., Monkai, J. & Farias, A.R.G. (2022) The importance of culture-based techniques in the genomic era for assessing the taxonomy and diversity of soil fungi. Mycosphere 13: 724–751. https://doi.org/10.5943/mycosphere/13/1/8
  53. Ye, G., Chen, J., Yang, P., Hu, H.W., He, Z.Y., Wang, D., Cao, D., Zhang, W., Wu, B., Wu, Y. & Wei, X. (2023) Non-native plant species invasion increases the importance of deterministic processes in fungal community assembly in a coastal wetland. Microbial Ecology 86: 1120–1131. https://doi.org/10.1007/s00248-022-02144-z
  54. Zhao, H., Nie, Y., Zong, T.K., Wang, K., Lv, M.L., Cui, Y.J., Tohtirjap, A., Chen, J.J., Zhao, C.L., Wu, F. & Cui, B.K. (2023) Species diversity, updated classification and divergence times of the phylum Mucoromycota. Fungal Diversity 123: 49–157. https://doi.org/10.1007/s13225-023-00525-4
  55. Zhao, H., Nie, Y., Zong, T.K., Wang, Y.J., Wang, M., Dai, Y.C. & Liu, X.Y. (2022) Species diversity and ecological habitat of Absidia (Cunninghamellaceae, Mucorales) with emphasis on five new species from forest and grassland soil in China. Journal of Fungi 8: 471. https://doi.org/10.3390/jof8050471
  56. Zhao, H., Nie, Y., Zong, T., Dai, Y. & Liu, X. (2022) Three new species of Absidia (Mucoromycota) from China based on phylogeny, morphology and physiology. Diversity 14: 132. https://doi.org/10.3390/d14020132
  57. Zhao, H., Zhu, J., Zong, T.K., Liu, X.L., Ren, L.Y., Lin, Q., Qiao, M., Nie, Y., Zhang, Z.D. & Liu X.Y. (2021) Two new species in the family Cunninghamellaceae from China. Mycobiology 49: 142–150. https://doi.org/10.1080/12298093.2021.1904555
  58. Zhaxybayeva, O. & Gogarten, J.P. (2002) Bootstrap Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3: 1–15. https://doi.org/10.1186/1471-2164-3-4